9,338 research outputs found
Water exchange at a hydrated platinum electrode is rare and collective
We use molecular dynamics simulations to study the exchange kinetics of water
molecules at a model metal electrode surface -- exchange between water
molecules in the bulk liquid and water molecules bound to the metal. This
process is a rare event, with a mean residence time of a bound water of about
40 ns for the model we consider. With analysis borrowed from the techniques of
rare-event sampling, we show how this exchange or desorption is controlled by
(1) reorganization of the hydrogen bond network within the adlayer of bound
water molecules, and by (2) interfacial density fluctuations of the bulk liquid
adjacent to the adlayer. We define collective coordinates that describe the
desorption mechanism. Spatial and temporal correlations associated with a
single event extend over nanometers and tens of picoseconds.Comment: 10 pages, 9 figure
Apollo experience report: The cryogenic storage system
A review of the design, development, and flight history of the Apollo cryogenic storage system and of selected components within the system is presented. Discussions are presented on the development history of the pressure vessels, heaters, insulation, and selected components. Flight experience and operational difficulties are reported in detail to provide definition of the problems and applicable corrective actions
Structure and thermodynamics of colloid-polymer mixtures: a macromolecular approach
The change of the structure of concentrated colloidal suspensions upon
addition of non-adsorbing polymer is studied within a two-component,
Ornstein-Zernicke based liquid state approach. The polymers' conformational
degrees of freedom are considered and excluded volume is enforced at the
segment level. The polymer correlation hole, depletion layer, and excess
chemical potentials are described in agreement with polymer physics theory in
contrast to models treating the macromolecules as effective spheres. Known
depletion attraction effects are recovered for low particle density, while at
higher densities novel many-body effects emerge which become dominant for large
polymers.Comment: 7 pages, 4 figures; to be published in Europhys. Let
Early Cementation of the Short Creek Oolite Member, Boone Formation (Osagean, Lower Mississippian), Northern Arkansas
The Short Creek Oolite is the only formally named member of the Boone Formation in northern Arkansas. It lacks bedding features, and oolith concentrations that would suggest a shoal environment, and it occurs at variable stratigraphic horizons within the upper Boone Formation consistent with episodic deposition as grainflow slurries. As with modern oolite examples, such as Joulters Cays, Bahamas, the Short Creek preserves numerous intraclasts, and at least one large olistolith indicating an early cementation history
Potential model calculations and predictions for heavy quarkonium
We investigate the spectroscopy and decays of the charmonium and upsilon
systems in a potential model consisting of a relativistic kinetic energy term,
a linear confining term including its scalar and vector relativistic
corrections and the complete perturbative one-loop quantum chromodynamic short
distance potential. The masses and wave functions of the various states are
obtained using a variational technique, which allows us to compare the results
for both perturbative and nonperturbative treatments of the potential. As well
as comparing the mass spectra, radiative widths and leptonic widths with the
available data, we include a discussion of the errors on the parameters
contained in the potential, the effect of mixing on the leptonic widths, the
Lorentz nature of the confining potential and the possible
interpretation of recently discovered charmonium-like states.Comment: Physical Review published versio
PSR J0609+2130: A disrupted binary pulsar?
We report the discovery and initial timing observations of a 55.7-ms pulsar,
J0609+2130, found during a 430-MHz drift-scan survey with the Arecibo radio
telescope. With a spin-down rate of s s and an
inferred surface dipole magnetic field of only G,
J0609+2130 has very similar spin parameters to the isolated pulsar J2235+1506
found by Camilo, Nice & Taylor (1993). While the origin of these weakly
magnetized isolated neutron stars is not fully understood, one intriguing
possibility is that they are the remains of high-mass X-ray binary systems
which were disrupted by the supernova explosion of the secondary star.Comment: 5 pages, 2 figures, accepted for publication in MNRAS (letters
The application of the global isomorphism to the surface tension of the liquid-vapor interface of the Lennard-Jones fluids
In this communication we show that the surface tension of the real fluids of
the Lennard-Jones type can be obtained from the surface tension of the lattice
gas (Ising model) on the basis of the global isomorphism approach developed
earlier for the bulk properties.Comment: 8 pages, 6 figure
VLA Survey of Dense Gas in Extended Green Objects: Prevalence of 25 GHz Methanol Masers
We present resolution Very Large Array (VLA) observations of four
CHOH - 25~GHz transitions (=3, 5, 8, 10) along with 1.3~cm
continuum toward 20 regions of active massive star formation containing
Extended Green Objects (EGOs), 14 of which we have previously studied with the
VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al.
2009). Sixteen regions are detected in at least one 25~GHz line (=5), with
13 of 16 exhibiting maser emission. In total, we report 34 new sites of
CHOH maser emission and ten new sites of thermal CHOH emission,
significantly increasing the number of 25~GHz Class I CHOH masers observed
at high angular resolution. We identify probable or likely maser counterparts
at 44~GHz for all 15 of the 25~GHz masers for which we have complementary data,
providing further evidence that these masers trace similar physical conditions
despite uncorrelated flux densities. The sites of thermal and maser emission of
CHOH are both predominantly associated with the 4.5 m emission from
the EGO, and the presence of thermal CHOH emission is accompanied by 1.3~cm
continuum emission in 9 out of 10 cases. Of the 19 regions that exhibit 1.3~cm
continuum emission, it is associated with the EGO in 16 cases (out of a total
of 20 sites), 13 of which are new detections at 1.3~cm. Twelve of the 1.3~cm
continuum sources are associated with 6.7~GHz maser emission and likely trace
deeply-embedded massive protostars
- …