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Abstract

The Short Creek Oolite is the only formally named
member of the Boone Formation in northern Arkansas.
It lacks bedding features, and oolith concentrations that
would suggest a shoal environment, and it occurs at
variable stratigraphic horizons within the upper Boone
Formation consistent with episodic deposition as grain-
flow slurries. As with modern oolite examples, such as
Joulters Cays, Bahamas, the Short Creek preserves
numerous intraclasts, and at least one large olistolith
indicating an early cementation history.

Introduction

The Short Creek oolite was proposed as a member
of the Boone Formation (Osagean, Lower
Mississippian) for exposures along the stream of that

name heading in Newton County, Kansas, and flowing
westward into the Spring River in Cherokee County,
Kansas (Smith and Siebenthal 1907). Those authors
described the interval as a persistent, massive,
homogeneous bed of concentric ooliths that was 20.3-
45.7 cm (8-18 in) thick. The unit was identified in a
number of sections in southwestern Missouri,
particularly quarries in the vicinity of Springfield,
Greene County, and Joplin, Newton County, where it
thickens to 0.61-2.4 m (2-8 ft) (Spreng 1961). It is the
only formally named member of the Boone Formation
recognized in Arkansas with only sporadic
occurrences, but reaching a maximum thickness of 7.6
m (25 ft) at War Eagle Quarry (Lisle 1983) (Fig. 1).

Deposition of the Short Creek in northern
Arkansas is somewhat problematic. The concentration
of ooliths is lower than would be expected for a shoal,
typically less than 50% of the grain volume (Lisle

Fig. 1. Short Creek Oolite exposed in the abandoned War Eagle Quarry, on the south side of U.S. Highway 412, accessible on a road just east of
the bridge over War Eagle Creek between Old Alabam and Harmony, Madison County, Arkansas. Upper Boone exhibits sharp, planar contacts
above and below a 7.6 m (25 ft) interval of Short Creek Oolite (white arrows). This locality was studied by Lisle (1983).
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1983), while non
ossicles and columnals, comprise as much as 25% (Fig.
2). Lime mud matrix and calcite cement may
contribute as much as 75% in some intervals (Lisle
1983). Bedding is planar, and there is no obviou
evidence of a high energy regime, particularly a lack of
exposures with tabular cross
Contacts of the oolitic interval with the adjacent upper
Boone strata are sharp and the interbedded limestone
chert succession above and below those
identical (Fig. 1). It seems more probable that these
ooliths were transported down
flow slurries derived from shoal areas that probably
developed sporadically as Upper Mississippian sea
level fell during the Kaskaskia I
and Bunker 1996). There are far more exposures of the
upper Boone Formation in Arkansas that have no oolite
development compared with those that do contain the
member.

Early Cementation History

Rip

clast
stripped by currents from semiconsolidated mud
deposits and transported to a new location (Neuendorf
et al. 2011).
as a c
reworked fragments of poorly cemented,
penecontemporaneous sediments deposited within the
same basin as their origin. Oolite deposits commonly
produce intraclasts because: 1) they are deposited
in shallow w

Fig. 2. Photomicrograph of Short Creek Oolite from War Eagle
Locality. Clouded grains are crinozoan ossicles and columnals;
light areas are calcite spar.
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Fig. 3. Intraclasts and cemented mud layers in poorly s
sands, Joulters Cays, Bahamas (Figs 10 & 11 reprinted with
permission from Major et al. 1996)

change, or brief drops in sea level; 2) the original
aragonitic composition is easily dissolved and
redeposited as cement by rain and interstitia
Major et al. (1996) reported that some cored intervals
taken through the modern oolite shoal developed at
Joulters Cays, north end of Andros Island, Bahamas,
comprised as much as 30% intraclasts (

encountered across the northern Arkansas outcrop belt
contain intraclasts similar to those reported by Major et
al. (1996) (Fig. 4).
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exotic blocks transported by submarine gravity sliding
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Ausbrooks (2003) described a massive oolite block at
least 23 m. (76 ft) long and nearly 4.6 m. (15 ft) high
encased within the Short Creek Oolite (Fig. 5). The
juxta
preserved as an olistolith within a similar oolitic
interval is further confirmation of the susceptibility of
this lithology to early cementation
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Conclusions

Intraclasts are common in the modern oolite shoal
environment on Joulters Cay, Bahamas. There,
solution of carbonate by meteoric water is
reprecipitated as cement lithifying surface crusts
during periodic exposure of the oolite. These crusts
are broken, transported and concentrated in low areas
on the shoal by periodic storms, after which they
become buried by continued formation of
unconsolidated oolite. The Short Creek does not
exhibit typical oolite shoal features, such as tabular
cross-bedding, but the same process effecting Joulters
Cay likely occurred during Short Creek deposition,
producing intraclasts that could be transported and
redeposited by grain-flow slurries. Cementation of
large areas produced blocks - olistoliths - that were
moved down-slope, perhaps by early shelf instability
reflecting local fault movements, and became buried
by unconsolidated oolite transported there also by
grain-flow slurries.

Acknowledgements

Page charges for this paper were defrayed by the
Department of Geosciences, University of Arkansas.
Permission to reproduce Figure 3 was granted by the
University of Texas at Austin, Bureau of Economic
Geology.

Literature Cited

Braden AK and SM Ausbrooks. 2003. The Short
Creek Oolite (Lower Mississippian) Newton
County, Arkansas (abs): Joint Annual Meeting,
South-central and Southeastern Sections,
Geological Society of America, poster 15-12.

Flores G. 1955. in Beneo, E., Les résultats des études
pour la recherche pétrolifere en Sicile. Fourth
World Petroleum Congress, Rome, Proceedings,
sec 1, p. 109-124.

Folk RL. 1959. Practical Petrographic Classification
of Limestones. American Association of Petro-
leum Geologists Bulletin. 43:1-38.

Lisle BA. 1983. Short Creek Oolite (Lower
Mississippian) deposition, War Eagle Quarry,
Madison County: Arkansas. Proceedings of the
Arkansas Academy of Science 36:47-49.

Major RP, DG Bebout and PM Harris. 1996. Facies
Heterogeneity in a Modern Ooid Sand Shoal – An
Analog for Hydrocarbon Reservoirs: Bureau of
Economic Geology, University of Texas,
Geological Circular 96-1. 30 p.

Neuendorf KKE, JP Mehl and JA Jackson. 2011.
Glossary of Geology, Fifth Edition revised,
American Geological Institute. 783 p.

Smith JP and AC Siebenthal. 1907. Description of
the Joplin District (Missouri-Kansas): U.S.
Geological Survey Atlas, Folio 148, 20 p.

Spreng AC. 1961. Mississippian System in Konig, JW
(ed.), The stratigraphic succession in Missouri.
Missouri Division of Geol. Survey and Water
Resources XL:49-78.

Witzke BJ and BJ Bunker. 1996. Relative sea-level
changes during the Middle Ordovician through
Mississippian deposition in the Iowa area, North
American craton, in Witzke, BJ, Ludvigson, GA,
and Day, J. (eds.), Paleozoic Sequence
Stratigraphy: Views from the North American
Craton: Geological Society of America, Special
Paper 306:307-330.

108

Journal of the Arkansas Academy of Science, Vol. 70 [2016], Art. 19

http://scholarworks.uark.edu/jaas/vol70/iss1/19


	Journal of the Arkansas Academy of Science
	2016

	Early Cementation of the Short Creek Oolite Member, Boone Formation (Osagean, Lower Mississippian), Northern Arkansas
	K. A. Jayne
	A. K. Chandler
	W. L. Manger
	Recommended Citation


	Microsoft Word - Page 3 Pres list.docx

