192,128 research outputs found

    Synthesis of indoles via alkylidenation of acyl hydrazides

    Get PDF
    Indoles have been synthesised via alkylidenation of acyl phenylhydrazides using phosphoranes and the Petasis reagent, followed by in situ thermal rearrangement of the product enehydrazines. The Petasis reagent provides an essentially neutral equivalent of the [acid-catalysed] Fischer indole synthesis, but with acyl phenylhydrazides as starting substrates. Alkylidene triphenylphosphoranes convert aroyl phenylhydrazides to indoles, but acyl phenylhydrazides derived from aliphatic carboxylic acids undergo a Brunner reaction to form indolin-2-ones

    Valence electronic structure of Mn in undoped and doped lanthanum manganites from relative K x-ray intensity studies

    Full text link
    Relative KK x-ray intensities of MnMn in MnMn, MnO2MnO_{2}, LaMnO3LaMnO_{3} and La0.7B0.3MnO3La_{0.7}B_{0.3}MnO_{3} (BB = CaCa, SrSr, and CeCe) systems have been measured following excitation by 59.54 keV γ\gamma-rays from a 200 mCi 241^{241}Am point-source. The measured results for the compounds deviate significantly from the results of pure MnMn. Comparison of the experimental data with the multiconfiguration Dirac-Fock (MCDF) effective atomic model calculations indicates reasonable agreement with the predictions of ionic model for the doped {manganites except} that the electron doped La0.7Ce0.3MnO3La_{0.7}Ce_{0.3}MnO_{3} and hole doped La0.7Ca0.3MnO3La_{0.7}Ca_{0.3}MnO_{3} compounds show some small deviations. The results of MnO2MnO_{2} and LaMnO3LaMnO_{3} deviate considerably from the predictions of the ionic model. Our measured Kβ/KαK\beta/K\alpha ratio of MnMn in La0.7Ca0.3MnO3La_{0.7}Ca_{0.3}MnO_{3} cannot be explained as a linear superposition of Kβ/KαK\beta/K\alpha ratios of MnMn for the end members which is in contrast to the recent proposal by Tyson et al. from their MnMn KβK\beta spectra.Comment: 14 pages, 4 figures. to appear in NIM-B.Please send an e-mail for figure

    D-Brane Charges in Gepner Models

    Full text link
    We construct Gepner models in terms of coset conformal field theories and compute their twisted equivariant K-theories. These classify the D-brane charges on the associated geometric backgrounds and therefore agree with the topological K-theories. We show this agreement for various cases, in particular the Fermat quintic.Comment: 25 pages, 2 figures. LaTeX. v2: typos and references corrected. v3: reference adde

    Tensor Product and Permutation Branes on the Torus

    Get PDF
    We consider B-type D-branes in the Gepner model consisting of two minimal models at k=2. This Gepner model is mirror to a torus theory. We establish the dictionary identifying the B-type D-branes of the Gepner model with A-type Neumann and Dirichlet branes on the torus.Comment: 26 page

    K-theoretical boundary rings in N=2 coset models

    Full text link
    A boundary ring for N=2 coset conformal field theories is defined in terms of a twisted equivariant K-theory. The twisted equivariant K-theories K_H(G) for compact Lie groups (G, H) such that G/H is hermitian symmetric are computed. These turn out to have the same ranks as the N=2 chiral rings of the associated coset conformal field theories, however the product structure differs from that on chiral primaries. In view of the K-theory classification of D-brane charges this suggests an interpretation of the twisted K-theory as a `boundary ring'. Complementing this, the N=2 chiral ring is studied in view of the isomorphism between the Verlinde algebra V_k(G) and twisted K_G(G) as proven by Freed, Hopkins and Teleman. As a spin-off, we provide explicit formulae for the ranks of the Verlinde algebras.Comment: 22 pages, harvmac (b); reference added, table 2 beautifie

    Boundary Rings and N=2 Coset Models

    Full text link
    We investigate boundary states of N=2 coset models based on Grassmannians Gr(n,n+k), and find that the underlying intersection geometry is given by the fusion ring of U(n). This is isomorphic to the quantum cohomology ring of Gr(n,n+k+1), and thus can be encoded in a ``boundary'' superpotential whose critical points correspond to the boundary states. In this way the intersection properties can be represented in terms of a soliton graph that forms a generalized, Z_{n+k+1} symmetric McKay quiver. We investigate the spectrum of bound states and find that the rational boundary CFT produces only a small subset of the possible quiver representations.Comment: 40p, 5 figs, refs added, typos and minor errors correcte
    • …
    corecore