37 research outputs found

    Mechanism of spin-triplet superconductivity in Sr2RuO4

    Full text link
    The unique Fermi surfaces and their nesting properties of Sr2RuO4 are considered. The existence of unconventional superconductivity is shown microscopically, for the first time, from the magnetic interactions (due to nesting) and the phonon-mediated interactions. The odd-parity superconductivity is favored in the α\alpha and ÎČ\beta sheets of the Fermi surface, and the various superconductivities are possible in the Îł\gamma sheet. There are a number of possible odd-parity gaps, which include the gaps with nodes, the breaking of time-reversal symmetry and d⃗∄z^\vec{d}\parallel \hat{z}.Comment: 4 pages, 3 figure

    On the Coexistence of Diagonal and off-Diagonal Long-Range Order, a Monte Carlo Study

    Full text link
    The zero temperature properties of interacting 2 dimensional lattice bosons are investigated. We present Monte Carlo data for soft-core bosons that demonstrate the existence of a phase in which crystalline long-range order and off-diagonal long-range order (superfluidity) coexist. We comment on the difference between hard and soft-core bosons and compare our data to mean-field results that predict a larger coexistence region. Furthermore, we determine the critical exponents for the various phase transitions.Comment: 7 pages and 8 figures appended in postscript, KA-TFP-93-0

    Cavity cooling of a nanomechanical resonator by light scattering

    Full text link
    We present a novel method for opto-mechanical cooling of sub-wavelength sized nanomechanical resonators. Our scheme uses a high finesse Fabry-Perot cavity of small mode volume, within which the nanoresonator is acting as a position-dependant perturbation by scattering. In return, the back-action induced by the cavity affects the nanoresonator dynamics and can cool its fluctuations. We investigate such cavity cooling by scattering for a nanorod structure and predict that ground-state cooling is within reach.Comment: 4 pages, 3 figure

    Quantum Correlations in Systems of Indistinguishable Particles

    Get PDF
    We discuss quantum correlations in systems of indistinguishable particles in relation to entanglement in composite quantum systems consisting of well separated subsystems. Our studies are motivated by recent experiments and theoretical investigations on quantum dots and neutral atoms in microtraps as tools for quantum information processing. We present analogies between distinguishable particles, bosons and fermions in low-dimensional Hilbert spaces. We introduce the notion of Slater rank for pure states of pairs of fermions and bosons in analogy to the Schmidt rank for pairs of distinguishable particles. This concept is generalized to mixed states and provides a correlation measure for indistinguishable particles. Then we generalize these notions to pure fermionic and bosonic states in higher-dimensional Hilbert spaces and also to the multi-particle case. We review the results on quantum correlations in mixed fermionic states and discuss the concept of fermionic Slater witnesses. Then the theory of quantum correlations in mixed bosonic states and of bosonic Slater witnesses is formulated. In both cases we provide methods of constructing optimal Slater witnesses that detect the degree of quantum correlations in mixed fermionic and bosonic states.Comment: 46 pages, 4 eps figure

    STIRAP transport of Bose-Einstein condensate in triple-well trap

    Full text link
    The irreversible transport of multi-component Bose-Einstein condensate (BEC) is investigated within the Stimulated Adiabatic Raman Passage (STIRAP) scheme. A general formalism for a single BEC in M-well trap is derived and analogy between multi-photon and tunneling processes is demonstrated. STIRAP transport of BEC in a cyclic triple-well trap is explored for various values of detuning and interaction between BEC atoms. It is shown that STIRAP provides a complete population transfer at zero detuning and interaction and persists at their modest values. The detuning is found not to be obligatory. The possibility of non-adiabatic transport with intuitive order of couplings is demonstrated. Evolution of the condensate phases and generation of dynamical and geometric phases are inspected. It is shown that STIRAP allows to generate the unconventional geometrical phase which is now of a keen interest in quantum computing.Comment: 9 pages, 6 figures. To be published in Laser Physics (v. 19, n.4, 2009

    The Adiabatic Transport of Bose-Einstein Condensates in a Double-Well Trap: Case a Small Nonlinearity

    Full text link
    A complete adiabatic transport of Bose-Einstein condensate in a double-well trap is investigated within the Landau-Zener (LZ) and Gaussian Landau-Zener (GLZ) schemes for the case of a small nonlinearity, when the atomic interaction is weaker than the coupling. The schemes use the constant (LZ) and time-dependent Gaussian (GLZ) couplings. The mean field calculations show that LZ and GLZ suggest essentially different transport dynamics. Significant deviations from the case of a strong coupling are discussed.Comment: 6 pages, 3 figures, to be published in Laser Physic

    "Pair" Fermi contour and repulsion-induced superconductivity in cuprates

    Full text link
    The pairing of charge carriers with large pair momentum is considered in connection with high-temperature superconductivity of cuprate compounds. The possibility of pairing arises due to some essential features of quasi-two-dimensional electronic structure of cuprates: (i) The Fermi contour with strong nesting features; (ii) The presence of extended saddle point near the Fermi level; (iii) The existence of some ordered state (for example, antiferromagnetic) close to the superconducting one as a reason for an appearing of "pair" Fermi contour resulting from carrier redistribution in momentum space. In an extended vicinity of the saddle point, momentum space has hyperbolic (pseudoeuclidean) metrics, therefore, the principal values of two-dimensional reciprocal reduced effective mass tensor have unlike signs. Rearrangement of holes in momentum space results in a rise of "pair" Fermi contour which may be defined as zero-energy line for relative motion of the pair. The superconducting gap arises just on this line. Pair Fermi contour formation inside the region of momentum space with hyperbolic metrics results in not only superconducting pairing but in a rise of quasi-stationary state in the relative motion of the pair. Such a state has rather small decay and may be related to the pseudogap regime of underdoped cuprates. It is concluded that the pairing in cuprates may be due to screened Coulomb repulsion. In this case, the superconducting energy gap in hole-doped cuprates exists in the region of hole concentration which is bounded both above and below. The superconducting state with positive condensation energy exists in more narrow range of doping level inside this region. Such hole concentration dependence correlates with typical phase diagram of cuprates.Comment: 23 pages, 11 figures. Submitted to Phys. Rev.

    Bogoliubov approach to superfluidity of atoms in an optical lattice

    Get PDF
    We use the Bogoliubov theory of atoms in an optical lattice to study the approach to the Mott-insulator transition. We derive an explicit expression for the superfluid density based on the rigidity of the system under phase variations. This enables us to explore the connection between the quantum depletion of the condensate and the quasi-momentum distribution on the one hand and the superfluid fraction on the other. The approach to the insulator phase may be characterized through the filling of the band by quantum depletion, which should be directly observable via the matter wave interference patterns. We complement these findings by self-consistent Hartree-Fock-Bogoliubov-Popov calculations for one-dimensional lattices including the effects of a parabolic trapping potential.Comment: 25 pages, 8 figure

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds

    Critical temperature and thermodynamics of attractive fermions at unitarity

    Get PDF
    The unitarity regime of the BCS-BEC crossover can be realized by diluting a system of two-component lattice fermions with an on-site attractive interaction. We perform a systematic-error-free finite-temperature simulation of this system by diagrammatic determinant Monte Carlo method. The critical temperature in units of Fermi energy is found to be Tc/ΔF=0.152(7). We also report the behavior of the thermodynamic functions, and discuss the issues of thermometry of ultracold Fermi gases
    corecore