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The unitarity regime of the BCS-BEC crossover can be realized by diluting a system of two-component
lattice fermions with an on-site attractive interaction. We perform a systematic-error-free finite-
temperature simulation of this system by diagrammatic determinant Monte Carlo method. The critical
temperature in units of Fermi energy is found to be Tc="F � 0:152�7�. We also report the behavior of the
thermodynamic functions, and discuss the issues of thermometry of ultracold Fermi gases.
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The unitarity limit is commonly referred to as the limit
of a diverging scattering length a! 1, and an effective
range of the interaction re ! 0. A Fermi gas in this limit
attains universality: at low enough temperature the only
relevant length scale is given by the density, n, since the
divergent scattering length drops out completely and the
system’s properties are independent of the interaction de-
tails. The unitarity limit is approximately realized in the
inner crust of the neutron stars, where the neutron-neutron
scattering length is nearly an order of magnitude larger
than the mean interparticle separation [1]. Unitarity con-
ditions can also be achieved with cold trapped atom gases
using the Feshbach resonance technique, i.e., tuning the
scattering length to infinity using the magnetic field. In
recent years these systems have been extensively studied
experimentally [2,3].

In the limit of � � 1=na3 ! �1 the fermions pair into
bosonic molecules and form a Bose-Einstein condensate
(BEC). In the opposite limit �! �1 one recovers the
Bardeen-Cooper-Schrieffer (BCS) limit. The unitarity
limit �! 0 separates these two extremes. In all these
cases, a gas undergoes a superfluid (SF) phase transition
at some temperature, which depends on �.

The early analytical treatments of the unitary Fermi gas
have been based on the extension of the BCS-type many-
body wave function [4]. Most of the subsequent elabora-
tions are also of mean-field type (with or without fluctua-
tions) [5–10]. The accuracy and reliability of such
approximations are nevertheless questionable given the
strongly interacting nature of the unitarity regime, and
the results differ by nearly an order of magnitude.

Monte Carlo (MC) simulations of Fermi systems are, in
general, severely hindered by a sign problem [11].
Fortunately for fermions with attractive contact interac-
tion, the sign problem can be avoided [12–14]. The ground
state of a unitary Fermi gas has been studied within a fixed-
node MC framework [15], the systematic errors of which
depend on the quality of a guess of the nodal structure of a
many-body fermion configuration. Despite a number of
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calculations at finite temperatures [16–18], a reliable esti-
mate of the critical temperature is lacking. The purpose of
this Letter is to provide accurate results for the critical
temperature and thermodynamic functions of a three-
dimensional (3D) unitary Fermi gas using a novel deter-
minant diagrammatic MC method free of systematic
errors.

Consider an attractive Hubbard model (AHM) defined
by the Hamiltonian H � H0 �H1, with

H0 �
X
k�

��k ���c
y
k�ck�; H1 � �U

X
x
nx"nx#; (1)

where cyk� is a fermion creation operator, nx� � cyx�cx�,
� �"; # is the spin index, x enumerates sites of a 3D simple
cubic lattice with periodic boundary conditions, the quasi-
momentum k spans the corresponding Brillouin zone,
�k � �2t

P3
��1 cosk� is the tight-binding spectrum, t �

1 is the hopping amplitude, � stands for the chemical
potential, U > 0 is the on-site attraction, and we have set
the lattice spacing to unity.

By solving the two-body problem of the model (1) one
finds that the scattering length diverges at Uc �
�L�3P

k2BZ1=2�k��1 � 7:915t. We use this value of U
throughout. Since we are ultimately interested in the con-
tinuum rather than lattice results, we study the low density
limit �! 0, where 0 � � � 2 is the filling fraction. We
define Fermi momentum as kF � �3�2��1=3 and Fermi
energy "F � k2

F, as those of a continuum gas with the
same effective mass and number density n � �.

We simulate the model (1) by diagrammatic determinant
MC calculations, discussed in detail in Refs. [13,19]. One
starts by expanding exp���H� in the interaction represen-
tation in powers of H1. The resulting Feynmann diagrams
consist of four-point vertices representing the Hubbard
interaction, connected by free single-particle propagators.
The sum over all possible ways of connecting vertices with
propagators, in the nth order diagram, is represented by a
vertex configuration Sn � f�xj; 	j�; j � 1; . . . ; ng, where 	
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is the imaginary time; see Fig. 1. In case of equal number
of spin-up and spin-down particles, the differential weight
of a configuration is positive definite

dP �Sn� � Unj detA�Sn�j2
Yn
j�1

d	j; (2)

where A�Sn� is an n� n matrix built on single-particle
propagators: Aij � G�0��xi � xj; 	i � 	j�.

The configuration space is sampled with a worm-type
[20] updating scheme [21], based on the two-particle cor-
relation function

G2�x; 	; x0; 	0� � hT 	P�x; 	�Py�x0; 	0�iN �2; (3)

where T 	 is the 	 ordering, P�x; 	� � cx"�	�cx#�	� is the
pair annihilation operator, a normalization factor N �
�L3 is introduced for future convenience (� is an in-
verse temperature), and h	 	 	i is the thermal average.
The nonzero asymptotic value of G2�x; 	; x0; 	0� as
jx� x0j ! 1 is proportional to the condensate density.

The typical number of vertices in a configuration scales
with the system volume as M / �UL3. Thus the Metropo-
lis acceptance ratios for the updates involve the ratio of
macroscopically large determinants detA�S0n0 �= detA�Sn�
with n0 � n or n
 1. Since we only need ratios of deter-
minants, fast-update formulas [13] can be used to reduce
the computational complexity of an update from M3 down
to M2.

We validate our method by comparing results against the
exact diagonalization data for a 4� 4 cluster [22], and
simulations of a critical temperature at quarter filling
[23,24]. In both cases we find agreement within a few
percent accuracy.

We work in the grand canonical ensemble at fixed
(L; T;�). Extracting the unitarity limit critical tempera-
ture, Tc, for the continuum gas from the lattice simulation
is a two-stage process: first, we study the thermodynamic
limit L! 1 to obtain Tc��� at a given �, and then ex-
trapolate to the continuum limit �! 0.

The first task is performed as follows: we simulate a
series of system sizes L1 > L2 > . . . at various tempera-
FIG. 1 (color online). A sketch of a vertex configuration for the
correlation function. Brown dots are the four-point vertices, with
the incoming and outgoing lines shown. Red diamonds represent
the two-point vertices corresponding to P�x; 	� and Py�x0; 	0�.
See the text for discussion.
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tures. At the critical point the correlation function (3)
decays as a power-law at large distances: G2�x; 	; x0; 	0� /
1=jx� x0j1�
, where 
 is an anomalous dimension. Since
the transition is expected to belong to the U�1� universality
class, we use 
 � 0:038 [25]. Hence, if one sums and
rescales the correlation function (3) according to

R�L; T� � L1�

X
xx0

Z �

0
d	

Z �

0
d	0G2�x; 	; x0; 	0�; (4)

the intersection of the curves R�Li; T� and R�Lj; T�, shown
in Fig. 2, gives a size-dependent estimate TLi;Lj��� for the
critical temperature Tc��� [26]. As L! 1, the series of
TLi;Lj��� converges to Tc��� and one can analyze it using
corrections to scaling, to extract its limiting value [11].
Likewise, a linear fit of a size-dependent estimate for the
filling factor ��L;�� versus 1=L yields the thermodynamic
limit filling factor ����.

The next step is to repeat the procedure for a sequence
of � values and extrapolate the resultant series of Tc���
towards �! 0 using the leading order form Tc���=
"F��� � Tc="F � const 	 �1=3. This functional form is ex-
pected from the analysis of the difference between the
scattering T matrices on the lattice and in the continuum
[21].

Shown in Fig. 3 are the simulation results for the critical
temperature at filling factors ranging from 0.95 down to
0.06. We use system sizes up to 163 sites with up to
300 fermions. It is clearly seen that starting from � � 0:5
the expected �1=3 scaling holds very well and the sublead-
ing corrections are negligible. On the other hand, close to
half filling, Tc��� is essentially constant [see, e.g., [27] ].

Figure 3 shows a strong dependence of Tc��� on �. This
is in apparent contradiction with Ref. [16] which assumes
no such dependence. This might be due to different single-
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FIG. 2 (color online). A typical crossing of the R�L; T� curves.
The error bars are 2�, and solid lines are the linear fits to the MC
points. The data are for the � � �5:2t, thus ��T � Tc; L!
1� � 0:148�1�.
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FIG. 3 (color online). The scaling of the lattice critical tem-
perature with filling factor (circles). The error bars are 1 standard
deviation. The results of Refs. [23,24] at quarter filling are also
shown for a comparison. See the text for discussion.
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FIG. 4 (color online). The temperature dependence of the en-
ergy per particle (upper panel) and chemical potential (lower
panel) of the unitary Fermi gas. Red circles are the MC results,
black dotted lines and blue dashed lines correspond to the
Boltzmann and noninteracting Fermi gases, respectively, the
dot-dashed lines are the asymptotic predictions of Ref. [29]
(plus the first virial Fermi correction), black triangles are the
path integral MC results of Ref. [16], and the purple stars denote
the ground-state fixed-node MC results [15].
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particle spectra �k: Ref. [16] employs a parabolic spectrum
with a spherically symmetric cutoff, while we use a tight-
binding spectrum over all of the Brillouin zone. Our pre-
liminary tests show that ��1=3 corrections do depend on
the specific choice of single-particle spectrum, and may
even have different signs for different �k.

The critical temperature we derive from Fig. 3 is Tc �
0:152�7�"F. Various approximate schemes have in the past
yielded Tc to be either above [5,6,8] or below [7,9,10] the
BEC limit TBEC � 0:218"F. Our results clearly show that it
is below.

Previous numerical results were also in disagreement on
whether Tc is higher or lower than TBEC: Ref. [17] quotes
Tc="F � 0:05, but the scattering length has not been de-
termined precisely. Most probably, this result corresponds
to a deep BCS regime, where the critical temperature is
exponentially suppressed. Lee and Schäfer [18] claim an
upper limit Tc < 0:14"F. This result is based on a study of
the caloric curve of a unitary Fermi gas down to T="F �
0:14 for filling factors down to � � 0:5. The caloric curve
of Ref. [18] shows no signs of divergent heat capacity
which would signal the phase transition. We find it not
surprising since at quarter filling Tc�� � 0:5�="F � 0:054;
see Fig. 3. The simulations of Ref. [16], which are also
based on a caloric curve study, yield Tc � 0:23�2�"F. What
this otherwise excellent treatment lacks is an accurate
finite-size and finite-density analysis of the MC data.

The value of Tc determined in this work cannot be di-
rectly compared to the experimental result Tc � 0:27�2�"F
[3] for a number of reasons. First, there are strong indica-
tions that a presence of a trap significantly enhances the
transition temperature; see, e.g., Ref. [8]. Second, the data
analysis of Ref. [3] relies on a mean-field approximate
theory for relating the empirical and actual temperature
scales. In this regard, it would be extremely interesting
16040
to see to what extent the results of Ref. [3] would be
affected if a different theoretical scheme is employed for
thermometry.

At unitarity, the thermodynamic functions acquire a self-
similar form [28]. For example, for the free energy one has

F�T; V; N� � f�F��T="F�N"F; (5)

where N is the number of particles, V is the volume, and
f�F��x� is a dimensionless function. Equation (5) allows
one to express all thermodynamic potentials in terms of
energy per particle f�E� � E=N"F and rescaled chemical
potential f��� � �="F. The latter quantities are directly
measurable numerically.

An analysis similar to the calculation of Tc yields

E=�N"F� � 0:31�1�; (6)

�="F � 0:493�14�: (7)

For the pressure P and entropy S, one than has

P=�n"F� � 0:207�7�; (8)
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S=N � 0:16�2�; (9)

which follows from (7) and exact relations PV � �2=3�E
and S � �5E=3��N�=NT. Equations (7)–(9) are
for T � Tc.

Shown in Fig. 4 are our results for the dependence of the
energy per particle and chemical potential on temperature.
In the high-temperature simulations we use system sizes of
up to 323 sites with up to 80 fermions.

As can be seen in Fig. 4, our results for both energy and
chemical potential approach values close to the fixed-node
MC values [15] as T ! 0. For T="F � 0:5 our results are
not far from the curve of Ref. [16]. As T="F !1, both
energy and chemical potential approach the virial expan-
sion [29] at high temperatures.

In conclusion, we have performed a determinant dia-
grammatic MC simulations of a unitary Fermi gas by
means of diluting the attractive Hubbard model. In order
to extract the continuum gas behavior we carefully treat
both finite-size and lattice corrections. We have determined
the critical temperature Tc="F � 0:152�7�, the values of
the thermodynamic functions at criticality, and the overall
shape of the thermodynamic potentials from zero- to high-
temperature regimes.

We thank A. Bulgac, P. Magierski, and J. Drut for
providing us with their data. This research was enabled
by computational resources of the Center for Computat-
ional Sciences and in part supported by the Laboratory
Research and Development program at Oak Ridge
National Laboratory. Part of the simulations were per-
formed on the ‘‘Hreidar’’ cluster of ETH Zürich. We also
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[18] D. T. Lee and T. Schäfer, Phys. Rev. C 73, 015202 (2006).
[19] E. Bourovski, N. Prokof’ev, and B. Svistunov, Phys.

Rev. B 70, 193101 (2004); note that in the present work
we do not use the ‘‘truncation’’ idea put forward in this
Letter.

[20] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Phys.
Lett. A 238, 253 (1998).

[21] E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer
(to be published).

[22] T. Husslein, W. Fettes, and I. Morgenstern, Int. J. Mod.
Phys. C 8, 397 (1997).

[23] A. Sewer, H. Beck, and X. Zotos, Phys. Rev. B 66, 140504
(2002).

[24] T. A. Maier et al. (to be published).
[25] M. E. Fisher, in Lecture Notes in Physics (Springer-Verlag,

Berlin, 1983), Vol. 186.
[26] K. Binder, Phys. Rev. Lett. 47, 693 (1981).
[27] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod.

Phys. 62, 113 (1990).
[28] T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004).
[29] T.-L. Ho and E. J. Mueller, Phys. Rev. Lett. 92, 160404

(2004).
2-4


