95 research outputs found

    Hidden geometric correlations in real multiplex networks

    Full text link
    Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.Comment: Supplementary Materials available at http://www.nature.com/nphys/journal/v12/n11/extref/nphys3812-s1.pd

    Inferring short-term volatility indicators from Bitcoin blockchain

    Full text link
    In this paper, we study the possibility of inferring early warning indicators (EWIs) for periods of extreme bitcoin price volatility using features obtained from Bitcoin daily transaction graphs. We infer the low-dimensional representations of transaction graphs in the time period from 2012 to 2017 using Bitcoin blockchain, and demonstrate how these representations can be used to predict extreme price volatility events. Our EWI, which is obtained with a non-negative decomposition, contains more predictive information than those obtained with singular value decomposition or scalar value of the total Bitcoin transaction volume

    Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications

    Get PDF
    We present the results of the characterization of Mg/Co periodic multilayers and their thermal stability for the EUV range. The annealing study is performed up to a temperature of 400\degree C. Images obtained by scanning transmission electron microscopy and electron energy loss spectroscopy clearly show the good quality of the multilayer structure. The measurements of the EUV reflectivity around 25 nm (~49 eV) indicate that the reflectivity decreases when the annealing temperature increases above 300\degreeC. X-ray emission spectroscopy is performed to determine the chemical state of the Mg atoms within the Mg/Co multilayer. Nuclear magnetic resonance used to determine the chemical state of the Co atoms and scanning electron microscopy images of cross sections of the Mg/Co multilayers reveal changes in the morphology of the stack from an annealing temperature of 305\degreee;C. This explains the observed reflectivity loss.Comment: Published in Applied Physics A: Materials Science \& Processing Published at http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21 page

    Electron Thermalization and Relaxation in Laser-Heated Nickel by Few-Femtosecond Core-Level Transient Absorption Spectroscopy

    Full text link
    Direct measurements of photoexcited carrier dynamics in nickel are made using few-femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy at the nickel M2,3_{2,3} edge. It is observed that the core-level absorption lineshape of photoexcited nickel can be described by a Gaussian broadening (σ\sigma) and a red shift (ωs\omega_{s}) of the ground state absorption spectrum. Theory predicts, and the experimental results verify that after initial rapid carrier thermalization, the electron temperature increase (ΔT\Delta T) is linearly proportional to the Gaussian broadening factor σ\sigma, providing quantitative real-time tracking of the relaxation of the electron temperature. Measurements reveal an electron cooling time for 50 nm thick polycrystalline nickel films of 640±\pm80 fs. With hot thermalized carriers, the spectral red shift exhibits a power-law relationship with the change in electron temperature of ωsΔT1.5\omega_{s}\propto\Delta T^{1.5}. Rapid electron thermalization via carrier-carrier scattering accompanies and follows the nominal 4 fs photoexcitation pulse until the carriers reach a quasi-thermal equilibrium. Entwined with a <6 fs instrument response function, carrier thermalization times ranging from 34 fs to 13 fs are estimated from experimental data acquired at different pump fluences and it is observed that the electron thermalization time decreases with increasing pump fluence. The study provides an initial example of measuring electron temperature and thermalization in metals in real time with XUV light, and it lays a foundation for further investigation of photoinduced phase transitions and carrier transport in metals with core-level absorption spectroscopy.Comment: 20 pages, 8 figure

    Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes

    Get PDF
    Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform

    Spin-polarized LEED from Xe-Pt(111)

    Get PDF
    Hilgers G, Kleineberg U, Nolting K, Wirth S, Müller N, Heinzmann U. Spin-polarized LEED from Xe-Pt(111). Vacuum. 1990;41(1-3):325-327
    corecore