668 research outputs found

    Self-stresses and Crack Formation by Particle Swelling in Cohesive Granular Media

    Full text link
    We present a molecular dynamics study of force patterns, tensile strength and crack formation in a cohesive granular model where the particles are subjected to swelling or shrinkage gradients. Non-uniform particle size change generates self-equilibrated forces that lead to crack initiation as soon as strongest tensile contacts begin to fail. We find that the coarse-grained stresses are correctly predicted by an elastic model that incorporates particle size change as metric evolution. The tensile strength is found to be well below the theoretical strength as a result of inhomogeneous force transmission in granular media. The cracks propagate either inward from the edge upon shrinkage and outward from the center upon swelling

    Substituting the main group element in cobalt - iron based Heusler alloys: Co2_2FeAl1x_{1-x}Six_x

    Full text link
    This work reports about electronic structure calculations for the Heusler compound Co2_2FeAl1x_{1-x}Six_x. Particular emphasis was put on the role of the main group element in this compound. The substitution of Al by Si leads to an increase of the number of valence electrons with increasing Si content and may be seen as electron-doping. Self-consistent electronic structure calculations were performed to investigate the consequences of the electron doping for the magnetic properties. The series Co2_2FeAl1x_{1-x}Six_x is found to exhibit half-metallic ferromagnetism and the magnetic moment follows the Slater-Pauling rule. It is shown that the electron-doping stabilises the gap in the minority states for x=0.5x=0.5.Comment: J. Phys. D (accepted

    First-principles scattering matrices for spin-transport

    Get PDF
    Details are presented of an efficient formalism for calculating transmission and reflection matrices from first principles in layered materials. Within the framework of spin density functional theory and using tight-binding muffin-tin orbitals, scattering matrices are determined by matching the wave-functions at the boundaries between leads which support well-defined scattering states and the scattering region. The calculation scales linearly with the number of principal layers N in the scattering region and as the cube of the number of atoms H in the lateral supercell. For metallic systems for which the required Brillouin zone sampling decreases as H increases, the final scaling goes as H^2*N. In practice, the efficient basis set allows scattering regions for which H^{2}*N ~ 10^6 to be handled. The method is illustrated for Co/Cu multilayers and single interfaces using large lateral supercells (up to 20x20) to model interface disorder. Because the scattering states are explicitly found, ``channel decomposition'' of the interface scattering for clean and disordered interfaces can be performed.Comment: 22 pages, 13 figure

    Appearance of Half-Metallicity in the Quaternary Heusler Alloys

    Full text link
    I report systematic first-principle calculations of the quaternary Heusler alloys like Co2_2[Cr1x_{1-x}Mnx_x]Al, Co2_2Mn[Al1x_{1-x}Snx_x] and [Fe1x_{1-x}Cox_x]2_2MnAl. I show that when the two limiting cases (x=0 or 1) correspond to a half-metallic compound, so do the intermediate cases. Moreover the total spin moment MtM_t in μB\mu_B scales linearly with the total number of valence electrons ZtZ_t (and thus with the concentration xx) following the relation Mt=Zt24M_t=Z_t-24, independently of the origin of the extra valence electrons, confirming the Slater-Pauling behavior of the normal Heusler alloys. Finally I discuss in all cases the trends in the atomic projected DOSs and in the atomic spin moments.Comment: 4 pages, 3 figures, 2 Table

    Surface Half-Metallicity of CrAs in the Zinc-Blende Structure

    Full text link
    The development of new techniques such as the molecular beam epitaxy have enabled the growth of thin films of materials presenting novel properties. Recently it was made possible to grow a CrAs thin-film in the zinc-blende structure. In this contribution, the full-potential screened KKR method is used to study the electronic and magnetic properties of bulk CrAs in this novel phase as well as the Cr and As terminated (001) surfaces. Bulk CrAs is found to be half-ferromagnetic for all three GaAs, AlAs and InAs experimental lattice constants with a total spin magnetic moment of 3 μB\mu_B. The Cr-terminated surface retains the half-ferromagnetic character of the bulk, while in the case of the As-termination the surface states destroy the gap in the minority-spin band.Comment: 4 pages, 2 figures, new text, new titl

    Half-Metallic Ferrimagnetism in Mn_2VAl

    Full text link
    We show that Mn_2VAl is a compound for which the generalized gradient approximation (GGA) to the exchange-correlation functional in density functional theory makes a qualitative change in predicted behavior compared to the usual local density approximation (LDA). Application of GGA leads to prediction of Mn_2VAl being a half-metallic ferrimagnet, with the minority channel being the conducting one. The electronic and magnetic structure is analyzed and contrasted with the isostructural enhanced semimetal Fe_2VAl.Comment: 5 pages, Latex, 6 postscript figures. Description and figures of the (minority) Fermi surfaces have been adde

    Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation

    Get PDF
    Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is reconsidered. It is shown that the original expressions for exchange integrals based on the magnetic force theorem (J. Phys. F14 L125 (1984)) are optimal for the calculations of the magnon spectrum whereas static response function is better described by the ``renormalized'' magnetic force theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is confirmed by the {\it ab initio} calculations for Fe and Ni.Comment: 12 pages, 2 figures, submitted to JPC

    Surface Properties of the Half- and Full-Heusler Alloys

    Full text link
    Using a full-potential \textit{ab-initio} technique I study the electronic and magnetic properties of the (001) surfaces of the half-Heusler alloys, NiMnSb, CoMnSb and PtMnSb and of the full-Heusler alloys Co2_2MnGe, Co2_2MnSi and Co2_2CrAl. The MnSb terminated surfaces of the half-Heusler compounds present properties similar to the bulk compounds and, although the half-metallicity is lost, an important spin-polarisation at the Fermi level. In contrast to this the Ni terminated surface shows an almost zero net spin-polarisation. While the bulk Co2_2MnGe and Co2_2MnSi are almost half-ferromagnetic, their surfaces lose the half-metallic character and the net spin-polarisation at the Fermi level is close to zero. Contrary to these compounds the CrAl terminated (001) surface of Co2_2CrAl shows a spin polarisation of about 84%.Comment: 14 pages, 6 figure

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds

    Apparent wave function collapse caused by scattering

    Full text link
    Some experimental implications of the recent progress on wave function collapse are calculated. Exact results are derived for the center-of-mass wave function collapse caused by random scatterings and applied to a range of specific examples. The results show that recently proposed experiments to measure the GRW effect are likely to fail, since the effect of naturally occurring scatterings is of the same form as the GRW effect but generally much stronger. The same goes for attempts to measure the collapse caused by quantum gravity as suggested by Hawking and others. The results also indicate that macroscopic systems tend to be found in states with (Delta-x)(Delta-p) = hbar/sqrt(2), but microscopic systems in highly tiltedly squeezed states with (Delta-x)(Delta-p) >> hbar.Comment: Final published version. 20 pages, Plain TeX, no figures. Online at http://astro.berkeley.edu/~max/collapse.html (faster from the US), from http://www.mpa-garching.mpg.de/~max/collapse.html (faster from Europe) or from [email protected]
    corecore