668 research outputs found
Self-stresses and Crack Formation by Particle Swelling in Cohesive Granular Media
We present a molecular dynamics study of force patterns, tensile strength and
crack formation in a cohesive granular model where the particles are subjected
to swelling or shrinkage gradients. Non-uniform particle size change generates
self-equilibrated forces that lead to crack initiation as soon as strongest
tensile contacts begin to fail. We find that the coarse-grained stresses are
correctly predicted by an elastic model that incorporates particle size change
as metric evolution. The tensile strength is found to be well below the
theoretical strength as a result of inhomogeneous force transmission in
granular media. The cracks propagate either inward from the edge upon shrinkage
and outward from the center upon swelling
Substituting the main group element in cobalt - iron based Heusler alloys: CoFeAlSi
This work reports about electronic structure calculations for the Heusler
compound CoFeAlSi. Particular emphasis was put on the role of
the main group element in this compound. The substitution of Al by Si leads to
an increase of the number of valence electrons with increasing Si content and
may be seen as electron-doping. Self-consistent electronic structure
calculations were performed to investigate the consequences of the electron
doping for the magnetic properties. The series CoFeAlSi is
found to exhibit half-metallic ferromagnetism and the magnetic moment follows
the Slater-Pauling rule. It is shown that the electron-doping stabilises the
gap in the minority states for .Comment: J. Phys. D (accepted
First-principles scattering matrices for spin-transport
Details are presented of an efficient formalism for calculating transmission
and reflection matrices from first principles in layered materials. Within the
framework of spin density functional theory and using tight-binding muffin-tin
orbitals, scattering matrices are determined by matching the wave-functions at
the boundaries between leads which support well-defined scattering states and
the scattering region. The calculation scales linearly with the number of
principal layers N in the scattering region and as the cube of the number of
atoms H in the lateral supercell. For metallic systems for which the required
Brillouin zone sampling decreases as H increases, the final scaling goes as
H^2*N. In practice, the efficient basis set allows scattering regions for which
H^{2}*N ~ 10^6 to be handled. The method is illustrated for Co/Cu multilayers
and single interfaces using large lateral supercells (up to 20x20) to model
interface disorder. Because the scattering states are explicitly found,
``channel decomposition'' of the interface scattering for clean and disordered
interfaces can be performed.Comment: 22 pages, 13 figure
Appearance of Half-Metallicity in the Quaternary Heusler Alloys
I report systematic first-principle calculations of the quaternary Heusler
alloys like Co[CrMn]Al, CoMn[AlSn] and
[FeCo]MnAl. I show that when the two limiting cases (x=0 or 1)
correspond to a half-metallic compound, so do the intermediate cases. Moreover
the total spin moment in scales linearly with the total number of
valence electrons (and thus with the concentration ) following the
relation , independently of the origin of the extra valence
electrons, confirming the Slater-Pauling behavior of the normal Heusler alloys.
Finally I discuss in all cases the trends in the atomic projected DOSs and in
the atomic spin moments.Comment: 4 pages, 3 figures, 2 Table
Surface Half-Metallicity of CrAs in the Zinc-Blende Structure
The development of new techniques such as the molecular beam epitaxy have
enabled the growth of thin films of materials presenting novel properties.
Recently it was made possible to grow a CrAs thin-film in the zinc-blende
structure. In this contribution, the full-potential screened KKR method is used
to study the electronic and magnetic properties of bulk CrAs in this novel
phase as well as the Cr and As terminated (001) surfaces. Bulk CrAs is found to
be half-ferromagnetic for all three GaAs, AlAs and InAs experimental lattice
constants with a total spin magnetic moment of 3 . The Cr-terminated
surface retains the half-ferromagnetic character of the bulk, while in the case
of the As-termination the surface states destroy the gap in the minority-spin
band.Comment: 4 pages, 2 figures, new text, new titl
Half-Metallic Ferrimagnetism in Mn_2VAl
We show that Mn_2VAl is a compound for which the generalized gradient
approximation (GGA) to the exchange-correlation functional in density
functional theory makes a qualitative change in predicted behavior compared to
the usual local density approximation (LDA). Application of GGA leads to
prediction of Mn_2VAl being a half-metallic ferrimagnet, with the minority
channel being the conducting one. The electronic and magnetic structure is
analyzed and contrasted with the isostructural enhanced semimetal Fe_2VAl.Comment: 5 pages, Latex, 6 postscript figures. Description and figures of the
(minority) Fermi surfaces have been adde
Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation
Starting from exact expression for the dynamical spin susceptibility in the
time-dependent density functional theory a controversial issue about exchange
interaction parameters and spin-wave excitation spectra of itinerant electron
ferromagnets is reconsidered. It is shown that the original expressions for
exchange integrals based on the magnetic force theorem (J. Phys. F14 L125
(1984)) are optimal for the calculations of the magnon spectrum whereas static
response function is better described by the ``renormalized'' magnetic force
theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is
confirmed by the {\it ab initio} calculations for Fe and Ni.Comment: 12 pages, 2 figures, submitted to JPC
Surface Properties of the Half- and Full-Heusler Alloys
Using a full-potential \textit{ab-initio} technique I study the electronic
and magnetic properties of the (001) surfaces of the half-Heusler alloys,
NiMnSb, CoMnSb and PtMnSb and of the full-Heusler alloys CoMnGe, CoMnSi
and CoCrAl. The MnSb terminated surfaces of the half-Heusler compounds
present properties similar to the bulk compounds and, although the
half-metallicity is lost, an important spin-polarisation at the Fermi level. In
contrast to this the Ni terminated surface shows an almost zero net
spin-polarisation. While the bulk CoMnGe and CoMnSi are almost
half-ferromagnetic, their surfaces lose the half-metallic character and the net
spin-polarisation at the Fermi level is close to zero. Contrary to these
compounds the CrAl terminated (001) surface of CoCrAl shows a spin
polarisation of about 84%.Comment: 14 pages, 6 figure
Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys
Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and
Applications" to be published in the series Springer Lecture Notes on Physics,
P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical
work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals
and Applications" to be published in the series Springer Lecture Notes on
Physics, P. H. Dederichs and I. Galanakis (eds
Apparent wave function collapse caused by scattering
Some experimental implications of the recent progress on wave function
collapse are calculated. Exact results are derived for the center-of-mass wave
function collapse caused by random scatterings and applied to a range of
specific examples. The results show that recently proposed experiments to
measure the GRW effect are likely to fail, since the effect of naturally
occurring scatterings is of the same form as the GRW effect but generally much
stronger. The same goes for attempts to measure the collapse caused by quantum
gravity as suggested by Hawking and others. The results also indicate that
macroscopic systems tend to be found in states with (Delta-x)(Delta-p) =
hbar/sqrt(2), but microscopic systems in highly tiltedly squeezed states with
(Delta-x)(Delta-p) >> hbar.Comment: Final published version. 20 pages, Plain TeX, no figures. Online at
http://astro.berkeley.edu/~max/collapse.html (faster from the US), from
http://www.mpa-garching.mpg.de/~max/collapse.html (faster from Europe) or
from [email protected]
- …