21,226 research outputs found

    Characterization of the psoRPM1 gene for resistance to root-knot nematodes in wild myrobalan plum (Prunus sogdiana)

    Get PDF
    Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different stone fruit crops. However, none of them has yet been cloned and they were only located on the chromosomes. In this study, a candidate root-knot nematode resistance gene (designated as psoRPM1) was isolated from the individual plant of Xinjiang wild myrobalan plum (Prunus sogdiana) by degenerate PCR amplification combined with the RACE technique. The gene had a typical NBS-LRR structure and high homology with Mi-1.2 (root-knot nematode resistance genes in tomato). The expression of psoRPM1 gene increased in the roots of resistant wild myrobalan plum material 12, 24 and 48 h after inoculation with root-knot nematodes and the expression of psoRPM1 gene was maximum 12 h after inoculation. But in susceptible plant, the psoRPM1 gene expression remained low both before and after inoculation. This result suggested that the psoRPM1 gene was constitutively expressed gene in the wild myrobalan plum. In-situ hybridization results showed that the psoRPM1 gene mainly expressed in both phloem and cortex parenchyma of root 12 h after inoculation in resistant plant. Furthermore, the psoRPM1 gene only expressed in phloem 48 h after inoculation in resistant plant. The result suggested that the psoRPM1 gene played a role in keeping nematodes off the cortex when nematodes began to infect the plant’s roots. After root-knot nematodes entering into cortex parenchyma, the psoRPM1 gene mainly played defense function in phloem of pericycle. Using the gene gun bombarding into onion epidermal cells, the result was that psoRPM1 protein was located in cytomembrane and might be interacted with other proteins in cytomembrane to locateKey words: Xingjiang wild myrobalan plum (Prunus sogdiana), root-knot nematodes (Meloidogyne incognita), gene, in-situ, gene location

    Avalanche-Induced Current Enhancement in Semiconducting Carbon Nanotubes

    Full text link
    Semiconducting carbon nanotubes under high electric field stress (~10 V/um) display a striking, exponential current increase due to avalanche generation of free electrons and holes. Unlike in other materials, the avalanche process in such 1D quantum wires involves access to the third sub-band, is insensitive to temperature, but strongly dependent on diameter ~exp(-1/d^2). Comparison with a theoretical model yields a novel approach to obtain the inelastic optical phonon emission length, L_OP,ems ~ 15d nm. The combined results underscore the importance of multi-band transport in 1D molecular wires

    P-wave Pairing in Two-Component Fermi Systems with Unequal Population near Feshbach Resonance

    Full text link
    We explore p-wave pairing in a single-channel two-component Fermi system with unequal population near Feshbach resonance. Our analytical and numerical study reveal a rich superfluid (SF) ground state structure as a function of imbalance. In addition to the state Δ±1Y1±1\Delta_{\pm 1} \propto Y_{1\pm 1}, a multitude of ``mixed'' SF states formed of linear combinations of Y1mY_{1m}'s give global energy minimum under a phase stability condition; these states exhibit variation in energy with the relative phase between the constituent gap amplitudes. States with local energy minimum are also obtained. We provide a geometric representation of the states. A TT=0 polarization vs. p-wave coupling phase diagram is constructed across the BEC-BCS regimes. With increased polarization, the global minimum SF state may undergo a quantum phase transition to the local minimum SF state.Comment: 5 pages, 3 figure

    Hadronic fluctuations in the QGP

    Full text link
    We analyze fluctuations of quark number and electric charge, in 2-flavour QCD at finite temperature and vanishing net baryon number density. In the hadronic phase we find that an enhancement of charge fluctuations arises from contributions of doubly charged hadrons to the thermodynamics. The rapid suppression of fluctuations seen in the high temperature phase suggests that in the QGP quark number and electric charge are predominantly carried by quasi-particles with the quantum numbers of quarks.Comment: 4 pages, 6 EPS-files, talk presented at Quark Matter 2005, Budapes

    Flow Equations for U_k and Z_k

    Get PDF
    By considering the gradient expansion for the wilsonian effective action S_k of a single component scalar field theory truncated to the first two terms, the potential U_k and the kinetic term Z_k, I show that the recent claim that different expansion of the fluctuation determinant give rise to different renormalization group equations for Z_k is incorrect. The correct procedure to derive this equation is presented and the set of coupled differential equations for U_k and Z_k is definitely established.Comment: 5 page

    Thermal Dissipation and Variability in Electrical Breakdown of Carbon Nanotube Devices

    Full text link
    We study high-field electrical breakdown and heat dissipation from carbon nanotube (CNT) devices on SiO2 substrates. The thermal "footprint" of a CNT caused by van der Waals interactions with the substrate is revealed through molecular dynamics (MD) simulations. Experiments and modeling find the CNT-substrate thermal coupling scales proportionally to CNT diameter and inversely with SiO2 surface roughness (~d/{\Delta}). Comparison of diffuse mismatch modeling (DMM) and data reveals the upper limit of thermal coupling ~0.4 W/K/m per unit length at room temperature, and ~0.7 W/K/m at 600 C for the largest diameter (3-4 nm) CNTs. We also find semiconducting CNTs can break down prematurely, and display more breakdown variability due to dynamic shifts in threshold voltage, which metallic CNTs are immune to; this poses a fundamental challenge for selective electrical breakdowns in CNT electronics

    Quantitative study of valence and configuration interaction parameters of the Kondo semiconductors CeM2Al10 (M = Ru, Os and Fe) by means of bulk-sensitive hard x-ray photoelectron spectroscopy

    Full text link
    The occupancy of the 4f^n contributions in the Kondo semiconductors CeM2Al10(M = Ru, Os and Fe) has been quantitatively determined by means of bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) on the Ce 3d core levels. Combining a configuration interaction scheme with full multiplet calculations allowed to accurately describe the HAXPES data despite the presence of strong plasmon excitations in the spectra. The configuration interaction parameters obtained from this analysis -- in particular the hybridization strength V_eff and the effective f binding energy Delta_f -- indicate a slightly stronger exchange interaction in CeOs2Al10 compared to CeRu2Al10, and a significant increase in CeFe2Al10. This verifies the coexistence of a substantial amount of Kondo screening with magnetic order and places the entire CeM2Al10 family in the region of strong exchange interactions.Comment: 9 pages, 4 figures, submitted to Physical Review

    On the Convergence of the Expansion of Renormalization Group Flow Equation

    Get PDF
    We compare and discuss the dependence of a polynomial truncation of the effective potential used to solve exact renormalization group flow equation for a model with fermionic interaction (linear sigma model) with a grid solution. The sensitivity of the results on the underlying cutoff function is discussed. We explore the validity of the expansion method for second and first-order phase transitions.Comment: 12 pages with 10 EPS figures included; revised versio

    Construction of microfluidic biochips with enhanced functionalities using 3D femtosecond laser direct writing

    Get PDF
    The extreme nonlinear interaction betweenfemtosecond laser pulses and large-band-gapmaterials has enabled three-dimensional (3D)microfabrication inside transparent materials. In thepast decade, this technique has been used forcreating a variety of functional components in glassmaterials, including microoptics, microfluidics,microelectronics, micromechanics, etc. Using thesebuilding blocks, femtosecond laser microfabricationalso allows for construction of highly integratedmicrodevices. Here, we provide an overview of ourlatest progress made along this direction, includingfocal spot engineering and nanofluidic fabrication.In particular, we show that 3D micro-/nano-fluidiccomponents with arbitrary geometries can bedirectly formed inside glass. This opens uppromising prospects for a broad spectrum ofapplications based on compact and complex 3Dmicrofluidic networks. Our work shows that thistechnique holds promise for fabricating 3D hybridmicro-systems, such as Lab-on-a-chip devices andMicro Total Analysis Systems in the future

    Zinc oxide tetrapods as efficient photocatalysts for organic pollutant degradation

    Get PDF
    Bisphenol A (BPA) and other organic pollutants from industrial wastewater have drawn increasing concern in the past decades regarding their environmental and biological risks, and hence developing strategies of effective degradation of BPA and other organic pollutants is imperative. Metal oxide nanostructures, in particular titanium oxide (TiO2) and zinc oxide (ZnO), have been demonstrated to exhibit efficient photodegradation of various common organic dyes. ZnO tetrapods are of special interest due to their low density of native defects which consequently lead to lower recombination losses and higher photocatalytic efficiency. Tetrapods can be obtained by relatively simple and low-cost vapor phase deposition in large quantity; the micron-scale size would also be advantageous for catalyst recovery. In this study, the photodegradation of BPA with ZnO tetrapods and TiO2 nanostructures under UV illumination were compared. The concentration of BPA dissolved in DI water was analyzed by high-performance liquid chromatography (HPLC) at specified time intervals. It was observed that the photocatalytic efficiency of ZnO tetrapods eventually surpassed Degussa P25 in free-standing form, and more than 80% of BPA was degraded after 60 min. Photodegradation of other organic dye pollutants by tetrapods and P25 were also examined. The superior photocatalytic efficiency of ZnO tetrapods for degradation of BPA and other organic dye pollutants and its correlation with the material properties were discussed. © 2015 SPIE.published_or_final_versio
    corecore