4,447 research outputs found

    Trajectory-Based Dynamic Map Labeling

    Full text link
    In this paper we introduce trajectory-based labeling, a new variant of dynamic map labeling, where a movement trajectory for the map viewport is given. We define a general labeling model and study the active range maximization problem in this model. The problem is NP-complete and W[1]-hard. In the restricted, yet practically relevant case that no more than k labels can be active at any time, we give polynomial-time algorithms. For the general case we present a practical ILP formulation with an experimental evaluation as well as approximation algorithms.Comment: 19 pages, 7 figures, extended version of a paper to appear at ISAAC 201

    Abundance Profiles and Kinematics of Damped Lyman-alpha Absorbing Galaxies at z < 0.65

    Full text link
    We present a spectroscopic study of six damped Lya absorption (DLA) systems at z<0.65, based on moderate-to-high resolution spectra of the galaxies responsible for the absorbers. Combining known metallicity measurements of the absorbers with known optical properties of the absorbing galaxies, we confirm that the low metal content of the DLA population can arise naturally as a combination of gas cross-section selection and metallicity gradients commonly observed in local disk galaxies. We also study the Tully-Fisher relation of the DLA-selected galaxies and find little detectable evidence for evolution in the disk population between z=0 and z~0.5. Additional results of our analysis are as follows. (1) The DLA galaxies exhibit a range of spectral properties, from post-starburst, to normal disks, and to starburst systems, supporting the idea that DLA galaxies are drawn from the typical field population. (2) Large rotating HI disks of radius 30 h^{-1} kpc and of dynamic mass M_dyn > 10^{11} h^{-1} M_sun appear to be common at intermediate redshifts. (3) Using an ensemble of six galaxy-DLA pairs, we derive an abundance profile that is characterized by a radial gradient of -0.041 +/- 0.012 dex per kiloparsec (or equivalently a scale length of 10.6 h^{-1} kpc) from galactic center to 30 h^{-1} kpc radius. (4) Adopting known N(HI) profiles of nearby galaxies and the best-fit radial gradient, we further derive an N(HI)-weighted mean metallicity _weighted = -0.50 +/- 0.07 for the DLA population over 100 random lines of sight, consistent with _weighted = -0.64 (-0.86, +0.40) observed for z~1 DLA systems from Prochaska et al. Our analysis demonstrates that the low metal content of DLA systems does not rule out the possibility that the DLA population trace the field galaxy population.Comment: 57 pages, 17 figures, to appear in the ApJ 20 February 2005 issue; a pdf version of the paper with full-resolution figures is available at http://falcon.mit.edu/~hchen/public/tmp/dlachem.pd

    Critical behavior of the 3-state Potts model on Sierpinski carpet

    Full text link
    We study the critical behavior of the 3-state Potts model, where the spins are located at the centers of the occupied squares of the deterministic Sierpinski carpet. A finite-size scaling analysis is performed from Monte Carlo simulations, for a Hausdorff dimension dfd_{f} 1.8928\simeq 1.8928. The phase transition is shown to be a second order one. The maxima of the susceptibility of the order parameter follow a power law in a very reliable way, which enables us to calculate the ratio of the exponents γ/ν\gamma /\nu. We find that the scaling corrections affect the behavior of most of the thermodynamical quantities. However, the sequence of intersection points extracted from the Binder's cumulant provides bounds for the critical temperature. We are able to give the bounds for the exponent 1/ν1/\nu as well as for the ratio of the exponents β/ν\beta/\nu, which are compatible with the results calculated from the hyperscaling relation.Comment: 13 pages, 4 figure

    Automatic eduction and statistical analysis of coherent structures in the wall region of a confine plane

    Get PDF
    This paper describes a vortex detection algorithm used to expose and statistically characterize the coherent flow patterns observable in the velocity vector fields measured by Particle Image Velocimetry (PIV) in the impingement region of air curtains. The philosophy and the architecture of this algorithm are presented. Its strengths and weaknesses are discussed. The results of a parametrical analysis performed to assess the variability of the response of our algorithm to the 3 user-specified parameters in our eduction scheme are reviewed. The technique is illustrated in the case of a plane turbulent impinging twin-jet with an opening ratio of 10. The corresponding jet Reynolds number, based on the initial mean flow velocity U0 and the jet width e, is 14000. The results of a statistical analysis of the size, shape, spatial distribution and energetic content of the coherent eddy structures detected in the impingement region of this test flow are provided. Although many questions remain open, new insights into the way these structures might form, organize and evolve are given. Relevant results provide an original picture of the plane turbulent impinging jet

    Structure optimization in an off-lattice protein model

    Full text link
    We study an off-lattice protein toy model with two species of monomers interacting through modified Lennard-Jones interactions. Low energy configurations are optimized using the pruned-enriched-Rosenbluth method (PERM), hitherto employed to native state searches only for off lattice models. For 2 dimensions we found states with lower energy than previously proposed putative ground states, for all chain lengths 13\ge 13. This indicates that PERM has the potential to produce native states also for more realistic protein models. For d=3d=3, where no published ground states exist, we present some putative lowest energy states for future comparison with other methods.Comment: 4 pages, 2 figure

    Constraining Type Ia supernova models: SN 2011fe as a test case

    Get PDF
    The nearby supernova SN 2011fe can be observed in unprecedented detail. Therefore, it is an important test case for Type Ia supernova (SN Ia) models, which may bring us closer to understanding the physical nature of these objects. Here, we explore how available and expected future observations of SN 2011fe can be used to constrain SN Ia explosion scenarios. We base our discussion on three-dimensional simulations of a delayed detonation in a Chandrasekhar-mass white dwarf and of a violent merger of two white dwarfs-realizations of explosion models appropriate for two of the most widely-discussed progenitor channels that may give rise to SNe Ia. Although both models have their shortcomings in reproducing details of the early and near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory (SNfactory), the overall match with the observations is reasonable. The level of agreement is slightly better for the merger, in particular around maximum, but a clear preference for one model over the other is still not justified. Observations at late epochs, however, hold promise for discriminating the explosion scenarios in a straightforward way, as a nucleosynthesis effect leads to differences in the 55Co production. SN 2011fe is close enough to be followed sufficiently long to study this effect.Comment: Accepted for publication in The Astrophysical Journal Letter

    Restraint Stress Alters Expression of Glucocorticoid Bioavailability Mediators, Suppresses Nrf2, and Promotes Oxidative Stress in Liver Tissue.

    Get PDF
    Hepatic glutathione synthesis and antioxidant protection are critically important for efficient detoxification processes in response to metabolic challenges. However, this biosynthetic pathway, regulated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), previously demonstrated paradoxical repression following exposure to glucocorticoid stress hormones in cultured hepatic cells. Therefore, the present study used an in vivo model of sub-acute psychological stress to investigate the relationship between hepatic corticosteroid regulation and antioxidant systems. Male Wistar rats were kept under control conditions or subjected to six hours of restraint stress applied for 1 or 3 days (n = 8 per group) after which the liver was isolated for assays of oxidative/nitrosative status and expression of corticosteroid regulatory and Nrf2-antioxidant response element pathway members. A single stress exposure produced a significant increase in the expression of corticosterone reactivator, 11-beta-hydroxysteroid dehydrogenase 1 (11β-Hsd1), while the 11β-Hsd2 isozyme and corticosteroid-binding globulin were down-regulated following stress, indicative of an elevated availability of active corticosterone. Exposure to restraint significantly decreased hepatic concentrations of total cysteine thiols and the antioxidant reduced glutathione on Day 1 and increased 3-nitrotyrosinated and carbonylated proteins on Day 3, suggestive of oxidative/nitrosative stress in the liver following stress exposure. Conversely, there was a sustained down-regulation of Nrf2 mRNA and protein in addition to significant reductions in downstream glutamate-cysteine ligase catalytic subunit (Gclc), the rate-limiting enzyme in glutathione synthesis, on Day 1 and 3 of stress treatment. Interestingly, other antioxidant genes including superoxide dismutase 1 and 2, and glutathione peroxidase 4 were significantly up-regulated following an episode of restraint stress. In conclusion, the results of the present study indicate that increased expression of 11β-Hsd1, indicative of elevated tissue glucocorticoid concentrations, may impair the Nrf2-dependent antioxidant response

    Resting-state magnetoencephalographic oscillatory connectivity to identify patients with chronic migraine using machine learning

    Get PDF
    To identify and validate the neural signatures of resting-state oscillatory connectivity for chronic migraine (CM), we used machine learning techniques to classify patients with CM from healthy controls (HC) and patients with other pain disorders. The cross-sectional study obtained resting-state magnetoencephalographic data from 240 participants (70 HC, 100 CM, 35 episodic migraine [EM], and 35 fibromyalgia [FM]). Source-based oscillatory connectivity of relevant cortical regions was calculated to determine intrinsic connectivity at 1–40&nbsp;Hz. A classification model that employed a support vector machine was developed using the magnetoencephalographic data to assess the reliability and generalizability of CM identification. In the findings, the discriminative features that differentiate CM from HC were principally observed from the functional interactions between salience, sensorimotor, and part of the default mode networks. The classification model with these features exhibited excellent performance in distinguishing patients with CM from HC (accuracy ≥ 86.8%, area under the curve (AUC) ≥ 0.9) and from those with EM (accuracy: 94.5%, AUC: 0.96). The model also achieved high performance (accuracy: 89.1%, AUC: 0.91) in classifying CM from other pain disorders (FM in this study). These resting-state magnetoencephalographic electrophysiological features yield oscillatory connectivity to identify patients with CM from those with a different type of migraine and pain disorder, with adequate reliability and generalizability
    corecore