92 research outputs found

    Impact of the frequency of online verifications on the patient set-up accuracy and set-up margins

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The purpose of the study was to evaluate the patient set-up error of different anatomical sites, to estimate the effect of different frequencies of online verifications on the patient set-up accuracy, and to calculate margins to accommodate for the patient set-up error (ICRU set-up margin, SM).</p> <p>Methods and materials</p> <p>Alignment data of 148 patients treated with inversed planned intensity modulated radiotherapy (IMRT) or three-dimensional conformal radiotherapy (3D-CRT) of the head and neck (n = 31), chest (n = 72), abdomen (n = 15), and pelvis (n = 30) were evaluated. The patient set-up accuracy was assessed using orthogonal megavoltage electronic portal images of 2328 fractions of 173 planning target volumes (PTV). In 25 patients, two PTVs were analyzed where the PTVs were located in different anatomical sites and treated in two different radiotherapy courses. The patient set-up error and the corresponding SM were retrospectively determined assuming no online verification, online verification once a week and online verification every other day.</p> <p>Results</p> <p>The SM could be effectively reduced with increasing frequency of online verifications. However, a significant frequency of relevant set-up errors remained even after online verification every other day. For example, residual set-up errors larger than 5 mm were observed on average in 18% to 27% of all fractions of patients treated in the chest, abdomen and pelvis, and in 10% of fractions of patients treated in the head and neck after online verification every other day.</p> <p>Conclusion</p> <p>In patients where high set-up accuracy is desired, daily online verification is highly recommended.</p

    TOI-858 B b: A hot Jupiter on a polar orbit in a loose binary

    Full text link
    We report the discovery of a hot Jupiter on a 3.28-day orbit around a 1.08 MSun_{Sun} G0 star that is the secondary component in a loose binary system. Based on follow-up radial velocity observations of TOI-858 B with CORALIE on the Swiss 1.2 m telescope and CHIRON on the 1.5 m telescope at the Cerro Tololo Inter-American Observatory (CTIO), we measured the planet mass to be 1.10±0.081.10\pm 0.08 MJ_{J} . Two transits were further observed with CORALIE to determine the alignment of TOI-858 B b with respect to its host star. Analysis of the Rossiter-McLaughlin signal from the planet shows that the sky-projected obliquity is λ=99.3±3.8\lambda = 99.3\pm 3.8. Numerical simulations show that the neighbour star TOI-858 A is too distant to have trapped the planet in a Kozai-Lidov resonance, suggesting a different dynamical evolution or a primordial origin to explain this misalignment. The 1.15 Msun primary F9 star of the system (TYC 8501-01597-1, at ρ\rho ~11") was also observed with CORALIE in order to provide upper limits for the presence of a planetary companion orbiting that star.Comment: Accepted for publication in A&

    TOI-2257 b: A highly eccentric long-period sub-Neptune transiting a nearby M dwarf

    Get PDF
    N.S., R.W. and B.-O.D. acknowledge support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow and from the European Space Agency (ESA) as an ESA Research Fellow. A.A.B., B.S.S.and I.A.S. acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780 (N13.1902.21.0039). L.D. is an F.R.S.-FNRS Postdoctoral Researcher. B.V.R. thanks the Heising-Simons Foundation for support. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. and E.J. acknowledges DGAPA for his postdoctoral fellowship. Y.G.M.C. acknowledges support from UNAM-DGAPA PAPIIT BG-101321. D.D. acknowledges support from the TESS Guest Investigator Program grant 80NSSC19K1727 and NASA Exoplanet Research Program grant 18-2XRP18_2-0136. We acknowledge support from the Centre for Space and Habitability (CSH) of the University of Bern. Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). Funding for the TESS mission is provided by NASA's Science Mission Directorate. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, F. Diaz, A. Franco, B. Garcia, C. Guerrero, G. Guisa, F. Guillen, A. Landa, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, G. Melgoza, F. Montalvo, J.M. Nunez, J.L. Ochoa, I. Plauchu, F. Quiroz, H. Riesgo, H. Serrano, T. Verdugo, I. Zavala. The research leading to these results has received funding from the European Research Council (ERC) under the FP/2007-2013 ERC grant agreement nffi 336480, and under the European Union's Horizon 2020 research and innovation programme (grants agreements nffi 679030 and 803193/BEBOP); from an Actions de Recherche Concertee (ARC) grant, financed by the Wallonia-Brussels Federation, from the Balzan Prize Foundation, from the BEL-SPO/BRAIN2.0 research program (PORTAL project), from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1), and from F.R.S-FNRS (Research Project ID T010920F). This work was also partially supported by a grant from the Simons Foundation (PI: Queloz, grant number 327127), as well as by the MERAC foundation (PI: Triaud). PI: Gillon is F.R.S.-FNRS Senior Research Associate. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant PDR T.0120.21, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). M.S.I.P. is funded by NSF. Some of the observations in the paper made use of the High-Resolution Imaging instrument(s) `Alopeke (and/or Zorro). `Alopeke (and/or Zorro) was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Data were reduced using a software pipeline originally written by Elliott Horch and Mark Everett. `Alopeke (and/or Zorro) was mounted on the Gemini North (and/or South) telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research made use of exoplanet (Foreman-Mackey et al. 2021a,b) and its dependencies (Agol et al. 2020; Kumar et al. 2019; Astropy Collaboration 2013, 2018; Kipping 2013; Luger et al. 2019; Salvatier et al. 2016; Theano Development Team 2016). Additional use of software packages AstroImageJ (Collins et al. 2017) and TAPIR (Jensen 2013).Context. Thanks to the relative ease of finding and characterizing small planets around M-dwarf stars, these objects have become cornerstones in the field of exoplanet studies. The current paucity of planets in long-period orbits around M dwarfs makes such objects particularly compelling as they provide clues about the formation and evolution of these systems. Aims. In this study we present the discovery of TOI-2257 b (TIC 198485881), a long-period (35 d) sub-Neptune orbiting an M3 star at 57.8 pc. Its transit depth is about 0.4%, large enough to be detected with medium-size, ground-based telescopes. The long transit duration suggests the planet is in a highly eccentric orbit (e similar to 0.5), which would make it the most eccentric planet known to be transiting an M-dwarf star. Methods. We combined TESS and ground-based data obtained with the 1.0-meter SAINT-EX, 0.60-meter TRAPPIST-North, and 1.2-meter FLWO telescopes to find a planetary size of 2.2 R-circle plus and an orbital period of 35.19 days. In addition, we make use of archival data, high-resolution imaging, and vetting packages to support our planetary interpretation. Results. With its long period and high eccentricity, TOI-2257 b falls into a novel slice of parameter space. Despite the planet's low equilibrium temperature (similar to 256 K), its host star's small size (R-* = 0.311 +/- 0.015) and relative infrared brightness (K-mag = 10.7) make it a suitable candidate for atmospheric exploration via transmission spectroscopy.Swiss National Science Foundation (SNSF)European Commission PP00P2-163967 PP00P2-190080MIT's Kavli InstituteEuropean Space Agency European CommissionMinistry of Science and Higher Education of the Russian Federation 075-15-2020-780 (N13.1902.21.0039)Heising-Simons FoundationFrench Community of BelgiumDGAPAPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) Universidad Nacional Autonoma de Mexico BG-101321TESS Guest Investigator Program 80NSSC19K1727NASA Exoplanet Research Program 18-2XRP18_2-0136Centre for Space and Habitability (CSH) of the University of BernSwiss National Science Foundation (SNSF)European Research Council (ERC) 336480Actions de Recherche Concertee (ARC) grant - Wallonia-Brussels FederationUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) ST/S00193X/1Fonds de la Recherche Scientifique - FNRS T010920FSimons Foundation 327127MERAC foundationFonds de la Recherche Scientifique - FNRS PDR T.0120.21Swiss National Science Foundation (SNSF)National Science Foundation (NSF)NASA Exoplanet Exploration Program NASA's Science Mission DirectorateEuropean Research Council (ERC) 679030 803193/BEBOPBalzan Prize Foundation BEL-SPO/BRAIN2.0 research program (PORTAL project

    The young mini-Neptune HD 207496b that is either a naked core or on the verge of becoming one

    Get PDF
    We report the discovery and characterisation of the transiting mini-Neptune HD~207496~b (TOI-1099) as part of a large programme that aims to characterise naked core planets. We obtained HARPS spectroscopic observations, one ground-based transit, and high-resolution imaging which we combined with the TESS photometry to confirm and characterise the TESS candidate and its host star. The host star is an active early K dwarf with a mass of 0.80±0.040.80 \pm 0.04\,M_\odot, a radius of 0.769±0.0260.769 \pm 0.026\,R_\odot, and a G magnitude of 8. We found that the host star is young, 0.52\sim 0.52\, Myr, allowing us to gain insight into planetary evolution. We derived a planetary mass of 6.1±1.6ME6.1 \pm 1.6\,\mathrm{M}_E,\, a planetary radius of 2.25±0.12RE2.25 \pm 0.12\,\mathrm{R}_E,\ and a planetary density of ρp=3.270.91+0.97g.cm3\rho_p = 3.27_{-0.91}^{+0.97}\,\mathrm{g.cm^{-3}}. From internal structure modelling of the planet, we conclude that the planet has either a water-rich envelope, a gas-rich envelope, or a mixture of both. We have performed evaporation modelling of the planet. If we assume the planet has a gas-rich envelope, we find that the planet has lost a significant fraction of its envelope and its radius has shrunk. Furthermore, we estimate it will lose all its remaining gaseous envelope in 0.52\sim 0.52\, Gyr. Otherwise, the planet could have already lost all its primordial gas and is now a bare ocean planet. Further observations of its possible atmosphere and/or mass-loss rate would allow us to distinguish between these two hypotheses. Such observations would determine if the planet remains above the radius gap or if it will shrink and be below the gap.Comment: 20 pages, 18 figures, 4 tables, A&A accepte

    Prognostic value of gross tumor volume delineated by FDG-PET-CT based radiotherapy treatment planning in patients with locally advanced pancreatic cancer treated with chemoradiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aimed to assess whether gross tumor volume (GTV) determined by fusion of contrast-enhanced computerized tomography (CT) and 18F-fluoro-deoxy-D-glucose positron emission tomography-CT (FDG-PET-CT) based radiotherapy planning could predict outcomes, namely overall survival (OS), local-regional progression-free survival (LRPFS), and progression-free survival (PFS) in cases with locally advanced pancreas cancer (LAPC) treated with definitive concurrent chemoradiotherapy.</p> <p>Methods</p> <p>A total of 30 patients with histological proof of LAPC underwent 50.4 Gy (1.8 Gy/28 fractions) of radiotherapy concurrent with continuously infused 5-FU followed by 4 to 6 courses of maintenance gemcitabine. Target volume delineations were performed on FDG-PET-CT-based RTP. Patients were stratified into 2 groups: GTV lesser (GTV<sub>L</sub>) versus greater (GTV<sub>G</sub>) than cut off value determined by receiver operating characteristic (ROC) analysis, and compared in terms of OS, LRPFS and PFS.</p> <p>Results</p> <p>Median GTV delineated according to the FDG-PET-CT data was 100.0 cm<sup>3</sup>. Cut off GTV value determined from ROC curves was 91.1 cm<sup>3</sup>. At a median follow up of 11.2 months, median OS, LRPFS and PFS for the entire population were 10.3, 7.8 and 5.7 months, respectively. Median OS, LRPFS and PFS for GTV<sub>L </sub>and GTV<sub>G </sub>cohorts were 16.3 vs. 9.5 (<it>p </it>= 0.005), 11.0 vs. 6.0 (<it>p </it>= 0.013), and 9.0 vs. 4.8 months (<it>p </it>= 0.008), respectively.</p> <p>Conclusions</p> <p>The superior OS, LRPFS and PFS observed in GTV<sub>L </sub>patients over GTV<sub>G </sub>ones suggests a potential for FDG-PET-CT-defined GTV size in predicting outcomes of LAPC patients treated with definitive C-CRT, which needs to be validated by further studies with larger cohorts.</p

    Mass and density of the transiting hot and rocky super-Earth LHS 1478 b (TOI-1640 b)

    Full text link
    One of the main objectives of the Transiting Exoplanet Survey Satellite ({TESS}) mission is the discovery of small rocky planets around relatively bright nearby stars. Here, we report the discovery and characterization of the transiting super-Earth planet orbiting LHS~1478 (TOI-1640). The star is an inactive red dwarf (J9.6J \sim 9.6\,mag and spectral type m3\,V) with mass and radius estimates of 0.20±0.010.20\pm0.01\,MM_{\odot} and 0.25±0.010.25\pm0.01\,RR_{\odot}, respectively, and an effective temperature of 3381±543381\pm54\,K.It was observed by \tess in four sectors. These data revealed a transit-like feature with a period of 1.949 days. We combined the TESS data with three ground-based transit measurements, 57 radial velocity (RV) measurements from CARMENES, and 13 RV measurements from IRD, determining that the signal is produced by a planet with a mass of 2.330.20+0.202.33^{+0.20}_{-0.20}\,MM_{\oplus} and a radius of 1.240.05+0.051.24^{+0.05}_{-0.05}\,RR_{\oplus}. The resulting bulk density of this planet is 6.67\,g\,cm3^{-3}, which is consistent with a rocky planet with an Fe- and MgSiO3_3-dominated composition. Although the planet would be too hot to sustain liquid water on its surface (its equilibrium temperature is about \sim595\,K, suggesting a Venus-like atmosphere), spectroscopic metrics based on the capabilities of the forthcoming James Webb Space Telescope and the fact that the host star is rather inactive indicate that this is one of the most favorable known rocky exoplanets for atmospheric characterization.Comment: 14 pages, 10 figures, 6 tables, accepted for publication in A&

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 \ub1 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 \ub1 0.41 M⊕, 33.12 \ub1 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    A sub-Neptune transiting the young field star HD 18599  at 40 pc

    Get PDF
    Transiting exoplanets orbiting young nearby stars are ideal laboratories for testing theories of planet formation and evolution. However, to date only a handful of stars with age &amp;lt;1 Gyr have been found to host transiting exoplanets. Here we present the discovery and validation of a sub-Neptune around HD 18599 , a young (300 Myr), nearby (d = 40 pc) K star. We validate the transiting planet candidate as a bona fide planet using data from the TESS , Spitzer , and Gaia  missions, ground-based photometry from IRSF , LCO , PEST , and NGTS , speckle imaging from Gemini, and spectroscopy from CHIRON , NRES , FEROS , and Minerva-Australis . The planet has an orbital period of 4.13 d , and a radius of 2.7 R⊕ . The RV data yields a 3-σ mass upper limit of 30.5 M⊕  which is explained by either a massive companion or the large observed jitter typical for a young star. The brightness of the host star (V∼9 mag) makes it conducive to detailed characterization via Doppler mass measurement which will provide a rare view into the interior structure of young planets

    A phase I study of the nitroimidazole hypoxia marker SR4554 using 19F magnetic resonance spectroscopy

    Get PDF
    SR4554 is a fluorine-containing 2-nitroimidazole, designed as a hypoxia marker detectable with 19F magnetic resonance spectroscopy (MRS). In an initial phase I study of SR4554, nausea/vomiting was found to be dose-limiting, and 1400 mg m−2 was established as MTD. Preliminary MRS studies demonstrated some evidence of 19F retention in tumour. In this study we investigated higher doses of SR4554 and intratumoral localisation of the 19F MRS signal. Patients had tumours 3 cm in diameter and 4 cm deep. Measurements were performed using 1H/19F surface coils and localised 19F MRS acquisition. SR4554 was administered at 1400 mg m−2, with subsequent increase to 2600 mg m−2 using prophylactic metoclopramide. Spectra were obtained immediately post infusion (MRS no. 1), at 16 h (MRS no. 2) and 20 h (MRS no. 3), based on the SR4554 half-life of 3.5 h determined from a previous study. 19Fluorine retention index (%) was defined as (MRS no. 2/MRS no. 1)*100. A total of 26 patients enrolled at: 1400 (n=16), 1800 (n=1), 2200 (n=1) and 2600 mg m−2 (n=8). SR4554 was well tolerated and toxicities were all grade 1; mean plasma elimination half-life was 3.7±0.9 h. SR4554 signal was seen on both unlocalised and localised MRS no. 1 in all patients. Localised 19F signals were detected at MRS no. 2 in 5 out of 9 patients and 4 out of 5 patients at MRS no. 3. The mean retention index in tumour was 13.6 (range 0.6-43.7) compared with 4.1 (range 0.6-7.3) for plasma samples taken at the same times (P=0.001) suggesting 19F retention in tumour and, therefore, the presence of hypoxia. We have demonstrated the feasibility of using 19F MRS with SR4554 as a potential method of detecting hypoxia. Certain patients showed evidence of 19F retention in tumour, supporting further development of this technique for detection of tumour hypoxia

    A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067

    Get PDF
    Funding: A.C.Ca. and T.G.Wi. acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant number ST/R003203/1. O.Ba. acknowledges that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 865624). M.La. acknowledges funding from a UKRI Future Leader Fellowship, grant number MR/S035214/1. A.Br. was supported by the SNSA. Contributions at the Mullard Space Science Laboratory by E.M.Br. were supported by STFC through the consolidated grant ST/W001136/1. A.Br. was supported by the SNSA. Contributions at the Mullard Space Science Laboratory by E.M.Br. were supported by STFC through the consolidated grant ST/W001136/1. Ch.He. acknowledges support from the European Union H2020-MSCA-ITN-2019 under Grant Agreement no. 860470 (CHAMELEON).Planets with radii between that of the Earth and Neptune (hereafter referred to as 'sub-Neptunes') are found in close-in orbits around more than half of all Sun-like stars . However, their composition, formation and evolution remain poorly understood . The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R to 2.85R . Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.PostprintPeer reviewe
    corecore