4,380 research outputs found
Kramers-Kronig, Bode, and the meaning of zero
The implications of causality, as captured by the Kramers-Kronig relations
between the real and imaginary parts of a linear response function, are
familiar parts of the physics curriculum. In 1937, Bode derived a similar
relation between the magnitude (response gain) and phase. Although the
Kramers-Kronig relations are an equality, Bode's relation is effectively an
inequality. This perhaps-surprising difference is explained using elementary
examples and ultimately traces back to delays in the flow of information within
the system formed by the physical object and measurement apparatus.Comment: 8 pages; American Journal of Physics, to appea
Rapid generation of all-optical K 39 Bose-Einstein condensates using a low-field Feshbach resonance
Ultracold potassium is an interesting candidate for quantum technology applications and fundamental research as it allows controlling intra-atomic interactions via low-field magnetic Feshbach resonances. However, the realization of high-flux sources of Bose-Einstein condensates remains challenging due to the necessity of optical trapping to use magnetic fields as free parameters. We investigate the production of all-optical K39 Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near 33 G. By tuning the scattering length in a range between 75a0 and 300a0 we demonstrate a tradeoff between evaporation speed and final atom number and decrease our evaporation time by a factor of 5 while approximately doubling the evaporation flux. To this end, we are able to produce fully condensed ensembles with 5.8Ă104 atoms within 850-ms evaporation time at a scattering length of 232a0 and 1.6Ă105 atoms within 3.9s at 158a0, respectively. We deploy a numerical model to analyze the flux and atom number scaling with respect to scattering length, identify current limitations, and simulate the optimal performance of our setup. Based on our findings we describe routes towards high-flux sources of ultracold potassium for inertial sensing
Topology with Dynamical Overlap Fermions
We perform dynamical QCD simulations with overlap fermions by hybrid
Monte-Carlo method on to lattices. We study the problem of
topological sector changing. A new method is proposed which works without
topological sector changes. We use this new method to determine the topological
susceptibility at various quark masses.Comment: 15 pages, 3 figure
Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: I. Early X-ray emission from the shocked ejecta and red giant wind
RS Ophiuchi began its latest outburst on 2006 February 12. Previous outbursts
have indicated that high velocity ejecta interact with a pre-existing red giant
wind, setting up shock systems analogous to those seen in Supernova Remnants.
However, in the previous outburst in 1985, X-ray observations did not commence
until 55 days after the initial explosion. Here we report on Swift observations
covering the first month of the 2006 outburst with the Burst Alert (BAT) and
X-ray Telescope (XRT) instruments. RS Oph was clearly detected in the BAT 14-25
keV band from t=0 to days. XRT observationsfrom 0.3-10 keV, started at
3.17 days after outburst. The rapidly evolving XRT spectra clearly show the
presence of both line and continuum emission which can be fitted by thermal
emission from hot gas whose characteristic temperature, overlying absorbing
column, , and resulting unabsorbed total flux decline monotonically
after the first few days. Derived shock velocities are in good agreement with
those found from observations at other wavelengths. Similarly, is in
accord with that expected from the red giant wind ahead of the forward shock.
We confirm the basic models of the 1985 outburst and conclude that standard
Phase I remnant evolution terminated by days and the remnant then
rapidly evolved to display behaviour characteristic of Phase III. Around t=26
days however, a new, luminous and highly variable soft X-ray source began to
appear whose origin will be explored in a subsequent paper.Comment: 20 pages, 4 figures (2 updated), accepted by Ap
Spitzer and ground-based infrared observations of the 2006 eruption of RS Ophiuchi
We present Spitzer Space Telescope and complementary ground-based infrared
observations of the recurrent nova RS Ophiuchi, obtained over the period 64-111
days after the 2006 eruption. The Spitzer IRS data show a rich emission line
spectrum superimposed on a free-free continuum. The presence of fine structure
and coronal infrared lines lead us to deduce that there are at least two
temperatures (1.5e5K and 9e5K) in the ejecta/wind environment, and that the
electron density in the `cooler' region is 2.2e5 cm-3. The determination of
elemental abundances is not straightforward but on the assumption that the Ne
and O fine structure lines arise in the same volume of the ejecta, the O/Ne
ratio is >~0.6 by number.Comment: 13 pages, 4 figures, accepted for publication in ApJ Letter
Correction : Assessing dimerisation degree and cooperativity in a biomimetic small-molecule model by pulsed EPR
Correction for âAssessing dimerisation degree and cooperativity in a biomimetic small-molecule model by pulsed EPRâ by K. Ackermann et al., Chem. Commun., 2015, 51, 5257â5260.Publisher PDFPeer reviewe
UBVRI observations of the flickering of RS Ophiuchi at Quiescence
We report observations of the flickering variability of the recurrent nova RS
Oph at quiescence on the basis of simultaneous observations in 5 bands (UBVRI).
RS Oph has flickering source with (U-B)_0=-0.62 \pm 0.07, (B-V)_0=0.15 \pm
0.10, (V-R)_0=0.25 \pm 0.05. We find for the flickering source a temperature
T_fl = 9500 \pm 500 K, and luminosity L_fl = 50 - 150 L_sun (using a distance
of d=1.6kpc). We also find that on a (U-B) vs (B-V) diagram the flickering of
the symbiotic stars differs from that of the cataclysmic variables. The
possible source of the flickering is discussed. The data are available upon
request from the authors and on the web
www.astro.bas.bg/~rz/RSOph.UBVRI.2010.MNRAS.tar.gz.Comment: 7 pages, MNRAS (accepted
- âŠ