29,336 research outputs found
Impact of Teat Order on Feed Consumption in Swine from Birth to Nursery
A relationship between teat order and feed consumption has been assumed in pigs, but no study has looked at this exact relationship. Pigs were observed shortly after birth to be in either a cranial, middle, or caudal teat positon. Growth performance data and active and total plasma ghrelin concentrations were analyzed at birth, weaning, and at the end of the nursery stage of production to see if a relationship with teat order was present. Overall, no effect of teat order was found on average daily gain, average daily feed intake, gain-to-feed ratio, or body weight among pigs from each section of the udder. Differences did occur during certain stages of nursery, which can be of economic importance to producers. No difference was seen in active or total ghrelin levels or the active-to-total ghrelin ratio in relation to teat order, although there were differences in active and total ghrelin concentrations among the sampling days. Further research should be carried out to investigate what factors would contribute to this data contradicting previous inferences about the relationship of teat order and feed consumption in pigs
Renormalization-group approach to superconductivity: from weak to strong electron-phonon coupling
We present the numerical solution of the renormalization group (RG) equations
derived in Ref. [1], for the problem of superconductivity in the presence of
both electron-electron and electron-phonon coupling at zero temperature. We
study the instability of a Fermi liquid to a superconductor and the RG flow of
the couplings in presence of retardation effects and the crossover from weak to
strong coupling. We show that our numerical results provide an ansatz for the
analytic solution of the problem in the asymptotic limits of weak and strong
coupling.Comment: 8 pages, 3 figures, conference proceedings for the Electron
Correlations and Materials Properties, in Kos, Greece, July 5-9, 200
Decoherence of flux qubits due to 1/f flux noise
We have investigated decoherence in Josephson-junction flux qubits. Based on
the measurements of decoherence at various bias conditions, we discriminate
contributions of different noise sources. In particular, we present a Gaussian
decay function of the echo signal as evidence of dephasing due to flux
noise whose spectral density is evaluated to be about /Hz
at 1 Hz. We also demonstrate that at an optimal bias condition where the noise
sources are well decoupled the coherence observed in the echo measurement is
mainly limited by energy relaxation of the qubit.Comment: 4 pages, error in Fig.4 corrected, to appear in PR
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided
Reply to Comment by D. Spemann et al [EPL 98 (2012) 57006, arXiv:1204.2992]
This article is a reply to the Comment by D. Spemann et al (arXiv:1204.2992)
in response to our paper 'Revealing common artifacts due to ferromagnetic
inclusions in highly oriented pyrolytic graphite' (EPL, 97 (2012) 47001).Comment: Reply to arXiv:1204.2992 Comment by D. Spemann et al re
arXiv:1201.6374 by Sepioni et a
The Optimal Inhomogeneity for Superconductivity: Finite Size Studies
We report the results of exact diagonalization studies of Hubbard models on a
square lattice with periodic boundary conditions and various
degrees and patterns of inhomogeneity, which are represented by inequivalent
hopping integrals and . We focus primarily on two patterns, the
checkerboard and the striped cases, for a large range of values of the on-site
repulsion and doped hole concentration, . We present evidence that
superconductivity is strongest for of order the bandwidth, and intermediate
inhomogeneity, . The maximum value of the ``pair-binding
energy'' we have found with purely repulsive interactions is for the checkerboard Hubbard model with and .
Moreover, for near optimal values, our results are insensitive to changes in
boundary conditions, suggesting that the correlation length is sufficiently
short that finite size effects are already unimportant.Comment: 8 pages, 9 figures; minor revisions; more references adde
Direct CP, T and/or CPT violations in the K^0-\bar{K^0} system - Implications of the recent KTeV results on decays -
The recent results on the CP violating parameters Re(e'/e) and \Delta\phi =
\phi_{00}-\phi_{+-} reported by the KTeV Collaboration are analyzed with a view
to constrain CP, T and CPT violations in a decay process. Combining with some
relevant data compiled by the Particle Data Group, we find Re(e_2-e_0) = (0.85
+- 3.11)*10^{-4} and Im(e_2-e_0) = (3.2 +- 0.7)*10^{-4}, where Re(e_I) and
Im(e_I) represent respectively CP/CPT and CP/T violations in decay of K^0 and
\bar{K^0} into a 2\pi state with isospin I.Comment: 7 pages, No figure
On the Validity of the Tomonaga Luttinger Liquid Relations for the One-dimensional Holstein Model
For the one-dimensional Holstein model, we show that the relations among the
scaling exponents of various correlation functions of the Tomonaga Luttinger
liquid (LL), while valid in the thermodynamic limit, are significantly modified
by finite size corrections. We obtain analytical expressions for these
corrections and find that they decrease very slowly with increasing system
size. The interpretation of numerical data on finite size lattices in terms of
LL theory must therefore take these corrections into account. As an important
example, we re-examine the proposed metallic phase of the zero-temperature,
half-filled one-dimensional Holstein model without employing the LL relations.
In particular, using quantum Monte Carlo calculations, we study the competition
between the singlet pairing and charge ordering. Our results do not support the
existence of a dominant singlet pairing state.Comment: 7 page
Techniques for the Synthesis of Reversible Toffoli Networks
This paper presents novel techniques for the synthesis of reversible networks
of Toffoli gates, as well as improvements to previous methods. Gate count and
technology oriented cost metrics are used. Our synthesis techniques are
independent of the cost metrics. Two new iterative synthesis procedure
employing Reed-Muller spectra are introduced and shown to complement earlier
synthesis approaches. The template simplification suggested in earlier work is
enhanced through introduction of a faster and more efficient template
application algorithm, updated (shorter) classification of the templates, and
presentation of the new templates of sizes 7 and 9. A novel ``resynthesis''
approach is introduced wherein a sequence of gates is chosen from a network,
and the reversible specification it realizes is resynthesized as an independent
problem in hopes of reducing the network cost. Empirical results are presented
to show that the methods are effective both in terms of the realization of all
3x3 reversible functions and larger reversible benchmark specifications.Comment: 20 pages, 5 figure
- …