1,258 research outputs found

    Phase space spinor amplitudes for spin 1/2 systems

    Get PDF
    The concept of phase space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-\half is treated in detail, and it is shown that phase space amplitudes on the sphere transform correctly as spinors under under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-\half magnetic dipole in a time-dependent magnetic field.Comment: 19 pages, added new results, fixed typo

    Planar microwave devices fabricated by ion-implantation patterning of high-temperature superconductors

    Get PDF
    We have applied ion-implantation inhibit patterning as a new method of fabricating low-loss microwave transmission lines in high-temperature superconductor thin films. To determine the effectiveness of this technique, we fabricated coplanar waveguide transmission lines in YBa2Cu3O7 – thin films that had been deposited on LaAlO3 substrates using pulsed laser deposition. Microwave characterizations of these lines are compared to a reference line fabricated with conventional ion milling. At 76 K and 12 GHz, the attenuation constants of the ion-implanted transmission lines are approximated 0.02 dB/mm, and the overall loss response is indistinguishable from that of the ion-milled device.published_or_final_versio

    Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals

    Get PDF
    Predictions of observable properties by density-functional theory calculations (DFT) are used increasingly often in experimental condensed-matter physics and materials engineering as data. These predictions are used to analyze recent measurements, or to plan future experiments. Increasingly more experimental scientists in these fields therefore face the natural question: what is the expected error for such an ab initio prediction? Information and experience about this question is scattered over two decades of literature. The present review aims to summarize and quantify this implicit knowledge. This leads to a practical protocol that allows any scientist - experimental or theoretical - to determine justifiable error estimates for many basic property predictions, without having to perform additional DFT calculations. A central role is played by a large and diverse test set of crystalline solids, containing all ground-state elemental crystals (except most lanthanides). For several properties of each crystal, the difference between DFT results and experimental values is assessed. We discuss trends in these deviations and review explanations suggested in the literature. A prerequisite for such an error analysis is that different implementations of the same first-principles formalism provide the same predictions. Therefore, the reproducibility of predictions across several mainstream methods and codes is discussed too. A quality factor Delta expresses the spread in predictions from two distinct DFT implementations by a single number. To compare the PAW method to the highly accurate APW+lo approach, a code assessment of VASP and GPAW with respect to WIEN2k yields Delta values of 1.9 and 3.3 meV/atom, respectively. These differences are an order of magnitude smaller than the typical difference with experiment, and therefore predictions by APW+lo and PAW are for practical purposes identical.Comment: 27 pages, 20 figures, supplementary material available (v5 contains updated supplementary material

    Galaxy Merger Candidates in High-Redshift Cluster Environments

    Get PDF
    We compile a sample of spectroscopically- and photometrically-selected cluster galaxies from four high-redshift galaxy clusters (1.59<z<1.711.59 < z < 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the \textit{Hubble Space Telescope} we classify potential mergers involving massive (M3×1010MM_* \geq 3\times 10^{10}\mathrm{M}_\odot) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalogue of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, 11.05.6+7.0%11.0 ^{+7.0}_{-5.6}\% of the cluster members are involved in potential mergers, compared to 24.74.6+5.3%24.7^{+5.3}_{-4.6}\% of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.Comment: Accepted by Ap

    Phenomenological approach to the critical dynamics of the QCD phase transition revisited

    Full text link
    The phenomenological dynamics of the QCD critical phenomena is revisited. Recently, Son and Stephanov claimed that the dynamical universality class of the QCD phase transition belongs to model H. In their discussion, they employed a time-dependent Ginzburg-Landau equation for the net baryon number density, which is a conserved quantity. We derive the Langevin equation for the net baryon number density, i.e., the Cahn-Hilliard equation. Furthermore, they discussed the mode coupling induced through the {\it irreversible} current. Here, we show the {\it reversible} coupling can play a dominant role for describing the QCD critical dynamics and that the dynamical universality class does not necessarily belong to model H.Comment: 13 pages, the Curie principle is discussed in S.2, to appear in J.Phys.

    The cytoplasm of living cells: A functional mixture of thousands of components

    Full text link
    Inside every living cell is the cytoplasm: a fluid mixture of thousands of different macromolecules, predominantly proteins. This mixture is where most of the biochemistry occurs that enables living cells to function, and it is perhaps the most complex liquid on earth. Here we take an inventory of what is actually in this mixture. Recent genome-sequencing work has given us for the first time at least some information on all of these thousands of components. Having done so we consider two physical phenomena in the cytoplasm: diffusion and possible phase separation. Diffusion is slower in the highly crowded cytoplasm than in dilute solution. Reasonable estimates of this slowdown can be obtained and their consequences explored, for example, monomer-dimer equilibria are established approximately twenty times slower than in a dilute solution. Phase separation in all except exceptional cells appears not to be a problem, despite the high density and so strong protein-protein interactions present. We suggest that this may be partially a byproduct of the evolution of other properties, and partially a result of the huge number of components present.Comment: 11 pages, 1 figure, 1 tabl

    Channel kets, entangled states, and the location of quantum information

    Full text link
    The well-known duality relating entangled states and noisy quantum channels is expressed in terms of a channel ket, a pure state on a suitable tripartite system, which functions as a pre-probability allowing the calculation of statistical correlations between, for example, the entrance and exit of a channel, once a framework has been chosen so as to allow a consistent set of probabilities. In each framework the standard notions of ordinary (classical) information theory apply, and it makes sense to ask whether information of a particular sort about one system is or is not present in another system. Quantum effects arise when a single pre-probability is used to compute statistical correlations in different incompatible frameworks, and various constraints on the presence and absence of different kinds of information are expressed in a set of all-or-nothing theorems which generalize or give a precise meaning to the concept of ``no-cloning.'' These theorems are used to discuss: the location of information in quantum channels modeled using a mixed-state environment; the CQCQ (classical-quantum) channels introduced by Holevo; and the location of information in the physical carriers of a quantum code. It is proposed that both channel and entanglement problems be classified in terms of pure states (functioning as pre-probabilities) on systems of p2p\geq 2 parts, with mixed bipartite entanglement and simple noisy channels belonging to the category p=3p=3, a five-qubit code to the category p=6p=6, etc.; then by the dimensions of the Hilbert spaces of the component parts, along with other criteria yet to be determined.Comment: Latex 32 pages, 4 figures in text using PSTricks. Version 3: Minor typographical errors correcte

    A non-autonomous stochastic discrete time system with uniform disturbances

    Full text link
    The main objective of this article is to present Bayesian optimal control over a class of non-autonomous linear stochastic discrete time systems with disturbances belonging to a family of the one parameter uniform distributions. It is proved that the Bayes control for the Pareto priors is the solution of a linear system of algebraic equations. For the case that this linear system is singular, we apply optimization techniques to gain the Bayesian optimal control. These results are extended to generalized linear stochastic systems of difference equations and provide the Bayesian optimal control for the case where the coefficients of these type of systems are non-square matrices. The paper extends the results of the authors developed for system with disturbances belonging to the exponential family
    corecore