6,250 research outputs found

    Evaluating methodological issues in the tourism literature: UK outgoing tourism and trade links

    Get PDF
    This paper evaluates the importance of trade in goods when modelling demand for tourism. It is argued that the limited literature testing causality between trade in goods and tourism does not consider the appropriate variables. This study utilises bilateral data for 16 UK tourist destinations in order to test Granger causality between trade in goods and tourism expenditure. UK imports, exports and total trade are tested separately, whilst controlling for real GDP and real bilateral exchange rates. The novelty of this paper is the variable specification, as well as testing the causal relationship for the case of UK outgoing tourists. Our findings suggest a causal relationship between the tourism expenditure of UK residents and trade in goods. These results support the inclusion of a trade in goods variable when estimating tourism demand, as well as adopting appropriate methodologies to account for this causal relationship. Furthermore, there is strong evidence that the trade-tourism link is important for both the UK and host countries

    Numerical simulation of solar coronal magnetic fields

    Get PDF
    Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity

    Low Temperature Magnetic Properties of the Double Exchange Model

    Full text link
    We study the {\it ferromagnetic} (FM) Kondo lattice model in the strong coupling limit (double exchange (DE) model). The DE mechanism proposed by Zener to explain ferromagnetism has unexpected properties when there is more than one itinerant electron. We find that, in general, the many-body ground state of the DE model is {\it not} globally FM ordered (except for special filled-shell cases). Also, the low energy excitations of this model are distinct from spin wave excitations in usual Heisenberg ferromagnets, which will result in unusual dynamic magnetic properties.Comment: 5 pages, RevTeX, 5 Postscript figures include

    Coexistence of wrinkles and blisters in supported graphene

    Get PDF
    Blisters induced by gas trapped in the interstitial space between supported graphene and the substrate are commonly observed. These blisters are often quasi-spherical with a circular rim, but polygonal blisters are also common and coexist with wrinkles emanating from their vertices. Here, we show that these different blister morphologies can be understood mechanically in terms of free energy minimization of the supported graphene sheet for a given mass of trapped gas and for a given lateral strain. Using a nonlinear continuum model for supported graphene closely reproducing experimental images of blisters, we build a morphological diagram as a function of strain and trapped mass. We show that the transition from quasi-spherical to polygonal of blisters as compressive strain is increased is a process of stretching energy relaxation and focusing, as many other crumpling events in thin sheets. Furthermore, to characterize this transition, we theoretically examine the onset of nucleation of short wrinkles in the periphery of a quasi-spherical blister. Our results are experimentally testable and provide a framework to control complex out-of-plane motifs in supported graphene combining blisters and wrinkles for strain engineering of graphene

    Position-squared coupling in a tunable photonic crystal optomechanical cavity

    Get PDF
    We present the design, fabrication, and characterization of a planar silicon photonic crystal cavity in which large position-squared optomechanical coupling is realized. The device consists of a double-slotted photonic crystal structure in which motion of a central beam mode couples to two high-Q optical modes localized around each slot. Electrostatic tuning of the structure is used to controllably hybridize the optical modes into supermodes which couple in a quadratic fashion to the motion of the beam. From independent measurements of the anti-crossing of the optical modes and of the optical spring effect, the position-squared vacuum coupling rate is measured to be as large as 245 Hz to the fundamental in-plane mechanical resonance of the structure at 8.7MHz, which in displacement units corresponds to a coupling coefficient of 1 THz/nm2^2. This level of position-squared coupling is approximately five orders of magnitude larger than in conventional Fabry-Perot cavity systems.Comment: 11 pages, 6 figure
    • …
    corecore