44 research outputs found

    Topographic Correction Module at Storm (TC@Storm)

    Get PDF

    Solar Radiation Maps

    Get PDF
    [EN]Solar maps are very interesting tools to describe the characteristics of a region from the solar radiation point of view, and can be applied in atmospheric sciences and for energy engineering. To make them possible, a solar radiation numerical model is proposed. This one allows us to estimate radiation values on any point on earth. The model takes into account the terrain surface conditions and the cast shadows. The procedure uses 2-D adaptive triangles meshes built refining according to surface and albedo characteristics. Solar irradiance values are obtained for clear sky conditions. Using clear sky index as a conversion factor, real sky values are computed in terms of irradiance or irradiation with a desired time step. Finally, the solar radiation maps are obtained for all the domain

    Big Earth Data for Cultural Heritage in the Copernicus Era

    Get PDF
    Digital data is stepping in its golden age characterized by an increasing growth of both classical and emerging big earth data along with trans- and multidisciplinary methodological approaches and services addressed to the study, preservation and sustainable exploitation of cultural heritage (CH). The availability of new digital technologies has opened new possibilities, unthinkable only a few years ago for cultural heritage. The currently available digital data, tools and services with particular reference to Copernicus initiatives make possible to characterize and understand the state of conservation of CH for preventive restoration and opened up a frontier of possibilities for the discovery of archaeological sites from above and also for supporting their excavation, monitoring and preservation. The different areas of intervention require the availability and integration of rigorous information from different sources for improving knowledge and interpretation, risk assessment and management in order to make more successful all the actions oriented to the preservation of cultural properties. One of the biggest challenges is to fully involve the citizen also from an emotional point of view connecting “pixels with people” and “bridging” remote sensing and social sensing

    Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    Get PDF
    Background: Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings: We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance: Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod biodiversity, as well as elucidating the mechanisms and constraints shaping the patterns observed.FCT - SFRH/BD/25568/ 2006EC FP6 - GOCE-CT-2005-511234 HERMESFCT - PTDC/MAR/69892/2006 LusomarBo

    Source area estimation of urban air temperatures

    No full text

    Estimation of dense time series of urban air temperatures from multitemporal geostationary satellite data

    No full text

    Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano

    No full text
    As specifically designed platforms are still unavailable at this point in time, lava flows are usually monitored remotely with the use of meteorological satellites. Generally, meteorological satellites have a low spatial resolution, which leads to uncertain results. This paper presents the first long term satellite monitoring of active lava flows on Stromboli volcano (August–November 2014) at high spatial resolution (160 m) and relatively high temporal resolution (~3 days). These data were retrieved by the small satellite Technology Experiment Carrier-1 (TET-1), which was developed and built by the German Aerospace Center (DLR). The satellite instrument is dedicated to high temperature event monitoring. The satellite observations were accompanied by field observations conducted by thermal cameras. These provided short time lava flow dynamics and validation for satellite data. TET-1 retrieved 27 datasets over Stromboli during its effusive activity. Using the radiant density approach, TET-1 data were used to calibrate the MODVOLC data and estimate the time averaged lava discharge rate. With a mean output rate of 0.87 m3/s during the three-month-long eruption, we estimate the total erupted volume to be 7.4 × 106 m3

    Lava Flow Monitoring Using TET-1 Satellite

    No full text
    Lava flow monitoring using satellites provides information on the temporal evolution of volcanic activity. It is usually done using metrological satellites because of the lack of more suitable satellites. The advantage of many meteorological satellites is the availability of appropriate spectral bands. For lava flow monitoring are most useful data in spectrum 3–4 μm (MIR) and 9–12 μm (TIR). However, the spatial resolution of meteorological satellites is usually very coarse causing uncertainties in results. Here we present the first long term satellite monitoring of an active lava flow on Stromboli volcano (end of August till the beginning of November 2014) in high spatial resolution (160 m) and relatively high temporal resolution (~3 days). We analysed data from a test satellite TET-1, which is a test satellite developed at DLR. It carries an instrument dedicated to monitoring of high temperature events. MIR band observations are often saturated at the meteorological satellites. This is not the case of TET-1, although their spatial resolution is very fine for a thermal sensor. TET-1 retrieved 27 datasets over Stromboli during its effusive activity. Some of images were cloudy situations, but most of them were very useful for monitoring of the lava flow radiant power
    corecore