52,343 research outputs found
Impact of large-scale dynamic versus thermodynamic climate conditions on contrasting tropical cyclone genesis frequency
Significant advances have been made in understanding the key climate factors responsible for tropical cyclone (TC) activity, yet any theory that estimates likelihood of observed TC formation rates from mean climate states remains elusive. The present study investigates how the extremes of observed TC genesis (TCG) frequency during peak TC seasons are interrelated with distinct changes in the large-scale climate conditions over different ocean basins using the global International Best Track Archive for Climate Stewardship (IBTrACS) dataset and ERA-Interim for the period 1979–2014. Peak TC seasons with significantly high and low TCG frequency are identified for five major ocean basins, and their substantial spatial changes in TCG are noted with regionally distinct differences. To explore the possible climate link behind such changes, a suite of potentially relevant dynamic and thermodynamic climate conditions is analyzed. Results indicate that the observed changes in extreme TCG frequency are closely linked with distinct dominance of specific dynamic and thermodynamic climate conditions over different regions. While the combined influences of dynamic and thermodynamic climate conditions are found to be necessary for modulating TC formation rate over the North Atlantic, eastern Pacific, and southern Indian Oceans, significant changes in large-scale dynamic conditions appear to solely control the TCG frequency over the western Pacific and South Pacific basins. Estimation of the fractional changes in genesis-weighted climate conditions also indicates the coherent but distinct competing effects of different climate conditions on TCG frequency. The present study further points out the need for revising the existing genesis indices for estimating TCG frequency over individual basins
Flight evaluation of a hydromechanical backup control for the digital electronic engine control system in an F100 engine
The backup control (BUC) features, the operation of the BUC system, the BUC control logic, and the BUC flight test results are described. The flight test results include: (1) transfers to the BUC at military and maximum power settings; (2) a military power acceleration showing comparisons bvetween flight and simulation for BUC and primary modes; (3) steady-state idle power showing idle compressor speeds at different flight conditions; and (4) idle-to-military power BUC transients showing where cpmpressor stalls occurred for different ramp rates and idle speeds. All the BUC transfers which occur during the DEEC flight program are initiated by the pilot. Automatic transfers to the BUC do not occur
Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches
We discuss jet substructure in recombination algorithms for QCD jets and
single jets from heavy particle decays. We demonstrate that the jet algorithm
can introduce significant systematic effects into the substructure. By
characterizing these systematic effects and the substructure from QCD,
splash-in, and heavy particle decays, we identify a technique, pruning, to
better identify heavy particle decays into single jets and distinguish them
from QCD jets. Pruning removes protojets typical of soft, wide angle radiation,
improves the mass resolution of jets reconstructing a heavy particle decay, and
decreases the QCD background. We show that pruning provides significant
improvements over unpruned jets in identifying top quarks and W bosons and
separating them from a QCD background, and may be useful in a search for heavy
particles.Comment: 33 pages, 42 figure
Finding a junction partner for candidate solar cell absorbers enargite and bournonite from electronic band and lattice matching
An essential step in the development of a new photovoltaic (PV) technology is
choosing appropriate electron and hole extraction layers to make an efficient
device. We recently proposed the minerals enargite (\enargite) and bournonite
(\bournonite) as materials that are chemically stable with desirable
optoelectronic properties for use as the absorber layer in a thin-film PV
device. For these compounds, spontaneous lattice polarization with internal
electric fields --- and potential ferroelectricity --- may allow for enhanced
carrier separation and novel photophysical effects. In this work, we calculate
the ionization potentials for non-polar surface terminations and propose
suitable partners for forming solar cell heterojunctions by matching the
electronic band edges to a set of candidate electrical contact materials. We
then further screen these candidates by matching the lattice constants and
identify those that are likely to minimise strain and achieve epitaxy. This
two-step screening procedure identified a range of unconventional candidate
contact materials including SnS2, ZnTe, WO3, and Bi2O3.Comment: 8 pages, 4 figures, 3 table
Flow field survey near the rotational plane of an advanced design propeller on a JetStar airplane
An investigation was conducted to obtain upper fuselage surface static pressures and boundary layer velocity profiles below the centerline of an advanced design propeller. This investigation documents the upper fuselage velocity flow field in support of the in-flight acoustic tests conducted on a JetStar airplane. Initial results of the boundary layer survey show evidence of an unusual flow disturbance, which is attributed to the two windshield wiper assemblies on the aircraft. The assemblies were removed, eliminating the disturbances from the flow field. This report presents boundary layer velocity profiles at altitudes of 6096 and 9144 m (20,000 and 30,000 ft) and Mach numbers from 0.6 to 0.8, and it investigated the effects of windshield wiper assemblies on these profiles. Because of the unconventional velocity profiles that were obtained with the assemblies mounted, classical boundary layer parameters, such as momentum and displacement thicknesses, are not presented. The effects of flight test variables (Mach number and angles of attack and sideslip) and an advanced design propeller on boundary layer profiles - with the wiper assemblies mounted and removed - are presented
Gas sensing based on optical fibre coupled diode laser spectroscopy : a new approach to sensor systems for safety monitoring
We describe an entirely passive fibre optic network which senses, amongst other species, CH¬4¬ and CO¬¬2 , with sensitivity and selectivity compatible with safety sensing in the mine environment. The basic principle is that a single laser diode source targeted to a particular species addresses up to 200 sensing points which may be spread over an area of dimensions ten or more km. The detection and processing electronics is typically located with the laser source. Several laser sources can be introduced in parallel to enable monitoring multiple species. The network itself, entirely linked through optical fibre, is inherently intrinsically safe. It is self checking for faults at the sensing location and continuously self calibrating. In the methane sensing mode its sensitivity is sub 100ppm and it responds accurately up to 100% methane. It is therefore capable of detecting extremely hazardous gas pockets which are completely missed by other sensor technologies. The network has demonstrated stability with zero maintenance or recalibration over periods in excess of two years. We believe that this system offers unique benefits in the context of mine safety and ventilation system monitoring
Projectile-shape dependence of impact craters in loose granular media
We report on the penetration of cylindrical projectiles dropped from rest
into a dry, noncohesive granular medium. The cylinder length, diameter,
density, and tip shape are all explicitly varied. For deep penetrations, as
compared to the cylinder diameter, the data collapse onto a single scaling law
that varies as the 1/3 power of the total drop distance, the 1/2 power of
cylinder length, and the 1/6 power of cylinder diameter. For shallow
penetrations, the projectile shape plays a crucial role with sharper objects
penetrating deeper.Comment: 3 pages, 3 figures; experimen
- …
