732 research outputs found

    Establishment of the Alfalfa Weevil Parasite \u3ci\u3eMicroctonus Aethiopoides (Hymenoptera: Braconidae)\u3c/i\u3e in Michigan

    Get PDF
    Microctonus aethiopoides, a braconid parasite of adult alfalfa weevil, Hypera postica, is now established in southeastern Minnesota. Releases were made near Caledonia in Houston County, in 1978 and 1979, and near Rosemount in Dakota County, in 1979 and 1980. M. aethiopoides was recovered in Houston County in 1979, a new state record, and since has expanded its range more than 40 km from the release site. Establishment in Dakota County was unexpected because of low host densities, but parasites were recovered there in 1983. Other workers have recovered M. aethiopoides in Olmstead County

    Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr

    Get PDF
    Two-photon excitation of a single-photon forbidden Auger resonance has been observed and investigated using the intense extreme ultraviolet radiation from the free electron laser in Hamburg. At the wavelength 26.9 nm (46 eV) two photons promoted a 3d core electron to the outer 4d shell. The subsequent Auger decay, as well as several nonlinear above threshold ionization processes, were studied by electron spectroscopy. The experimental data are in excellent agreement with theoretical predictions and analysis of the underlying multiphoton processes

    Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates

    Full text link
    Squeezed states, a special kind of entangled states, are known as a useful resource for quantum metrology. In interferometric sensors they allow to overcome the "classical" projection noise limit stemming from the independent nature of the individual photons or atoms within the interferometer. Motivated by the potential impact on metrology as wells as by fundamental questions in the context of entanglement, a lot of theoretical and experimental effort has been made to study squeezed states. The first squeezed states useful for quantum enhanced metrology have been proposed and generated in quantum optics, where the squeezed variables are the coherences of the light field. In this tutorial we focus on spin squeezing in atomic systems. We give an introduction to its concepts and discuss its generation in Bose-Einstein condensates. We discuss in detail the experimental requirements necessary for the generation and direct detection of coherent spin squeezing. Two exemplary experiments demonstrating adiabatically prepared spin squeezing based on motional degrees of freedom and diabatically realized spin squeezing based on internal hyperfine degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure

    Renyi-Wehrl entropies as measures of localization in phase space

    Full text link
    We generalize the concept of the Wehrl entropy of quantum states which gives a basis-independent measure of their localization in phase space. We discuss the minimal values and the typical values of these R{enyi-Wehrl entropies for pure states for spin systems. According to Lieb's conjecture the minimal values are provided by the spin coherent states. Though Lieb's conjecture remains unproven, we give new proofs of partial results that may be generalized for other systems. We also investigate random pure states and calculate the mean Renyi-Wehrl entropies averaged over the natural measure in the space of pure quantum states.Comment: 18 pages, no figures, some improved versions of main proofs, added J.referenc

    Wehrl entropy, Lieb conjecture and entanglement monotones

    Full text link
    We propose to quantify the entanglement of pure states of N×NN \times N bipartite quantum system by defining its Husimi distribution with respect to SU(N)×SU(N)SU(N)\times SU(N) coherent states. The Wehrl entropy is minimal if and only if the pure state analyzed is separable. The excess of the Wehrl entropy is shown to be equal to the subentropy of the mixed state obtained by partial trace of the bipartite pure state. This quantity, as well as the generalized (R{\'e}nyi) subentropies, are proved to be Schur--convex, so they are entanglement monotones and may be used as alternative measures of entanglement

    Monge Distance between Quantum States

    Get PDF
    We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q--functions). This quantity fulfills the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states.Comment: 9 pages in LaTex - RevTex + 2 figures in ps. submitted to Phys. Rev.

    Entanglement capability of self-inverse Hamiltonian evolution

    Full text link
    We determine the entanglement capability of self-inverse Hamiltonian evolution, which reduces to the known result for Ising Hamiltonian, and identify optimal input states for yielding the maximal entanglement rate. We introduce the concept of the operator entanglement rate, and find that the maximal operator entanglement rate gives a lower bound on the entanglement capability of a general Hamiltonian.Comment: 4 pages, no figures. Version 3: small change

    f-Oscillators and Nonlinear Coherent States

    Get PDF
    The notion of f-oscillators generalizing q-oscillators is introduced. For classical and quantum cases, an interpretation of the f-oscillator is provided as corresponding to a special nonlinearity of vibration for which the frequency of oscillation depends on the energy. The f-coherent states (nonlinear coherent states) generalizing q-coherent states are constructed. Applied to quantum optics, photon distribution function, photon number means, and dispersions are calculated for the f-coherent states as well as the Wigner function and Q-function. As an example, it is shown how this nonlinearity may affect the Planck distribution formula.Comment: Latex, 32 pages, accepted by Physica Script

    Fluctuations and Dissipation of Coherent Magnetization

    Full text link
    A quantum mechanical model is used to derive a generalized Landau-Lifshitz equation for a magnetic moment, including fluctuations and dissipation. The model reproduces the Gilbert-Brown form of the equation in the classical limit. The magnetic moment is linearly coupled to a reservoir of bosonic degrees of freedom. Use of generalized coherent states makes the semiclassical limit more transparent within a path-integral formulation. A general fluctuation-dissipation theorem is derived. The magnitude of the magnetic moment also fluctuates beyond the Gaussian approximation. We discuss how the approximate stochastic description of the thermal field follows from our result. As an example, we go beyond the linear-response method and show how the thermal fluctuations become anisotropy-dependent even in the uniaxial case.Comment: 22 page

    The Utility of Video Diaries for Organizational Research

    Get PDF
    This article assesses the utility of video diaries as a method for organization studies. While it is frequently suggested that video-based research methodologies have the capacity to capture new data about the minutiae of complex organizational affairs, as well as offering new forms of dissemination to both academic and professional audiences, little is known about the specific benefits and drawbacks of video diaries. We compare video diaries with two established and “adjacent” methods: traditional diary studies (written or audio) and other video methods. We evaluate each in relation to three key research areas: bodily expressions, identity, and practice studies. Our assessment of video diaries suggests that the approach is best used as a complement to other forms of research and is particularly suited to capturing plurivocal, asynchronous accounts of organizational phenomena. We use illustrations from an empirical research project to exemplify our claims before concluding with five points of advice for researchers wishing to employ this method
    corecore