1,009 research outputs found

    Student attitudes to entrepreneurship

    Get PDF
    This study on Student Attitudes to Entrepreneurship investigates the image which university students have of entrepreneurs and entrepreneurship. It is an initial exploratory/empirical study, which looks at the situation in Germany, Romania, Latvia, Italy and Austria. The study, based on questionnaires, shows that there are significant differences but also common features to the image of entrepreneurship and attitudes to it in the five countries. It is interesting to note that the students polled in connection with the study tended to have a neutral to positive/very positive image of entrepreneurs.attitude, attributes, entrepreneurs, entrepreneurship, opinion.

    Zur Situation von Armeria maritima ssp. hornburgensis - aktuelle Daten zu Populationsgröße, Demographie und Taxonomie

    Get PDF
    Der vorliegende Beitrag gibt einen Überblick über die aktuelle Bestandssituation (September 2006) von Armeria maritima ssp. hornburgensis (A. SCHULZ) ROTHM. sowie demografische und genetische Parameter der Population. Aus diesen Daten werden Empfehlungen für kurz-, mittelund langfristige Schutz- und Pflegemaßnahmen zum Erhalt der Population abgeleitet. Zusätzlich wird die Taxonomie der Sippe im Kontext neuer molekulargenetischer Untersuchungen des gesamten mitteleuropäischen Armeria maritima-Komplexes diskutiert

    Ultrafast far-infrared optics of carbon nanotubes

    Get PDF
    The optical properties of single-wall carbon nanotube sheets in the far-infrared (FIR) spectral range from few THz to several tens of THz have been investigated with terahertz spectroscopy both with static measurements elucidating the absorption mechanism in the FIR and with time-resolved experiments yielding information on the charge carrier dynamics after optical excitation of the nanotubes. We observe an overall depletion of the dominating broad absorption peak at around 4THz when the nanotubes are excited by a short visible laser pulse. This finding excludes particle-plasmon resonances as absorption mechanism and instead shows that interband transitions in tubes with an energy gap of ~10meV govern the far-infrared conductivity. A simple model based on an ensemble of two-level systems naturally explains the weak temperature dependence of the far-infrared conductivity by the tube-to-tube variation of the chemical potential. Furthermore, the time-resolved measurements do not show any evidence of a distinct free-carrier response which is attributed to the photogeneration of strongly bound excitons in the tubes with large energy gaps. The rapid decay of a featureless background with pronounced dichroism is associated with the increased absorption of spatially localized charge carriers before thermalization is completed

    Temperature dependence of ultrafast phonon dynamics in graphite

    Get PDF
    Nonequilibrium optical phonons are generated in graphite following the excitation of electron-hole pairs with a femtosecond laser pulse. Their energy relaxation is probed by means of terahertz pulses. We find that the hot-phonon lifetime increases by a factor of 2 when the sample temperature decreases from 300 to 5 K. These results suggest that the energy relaxation in graphite at room temperature and above is dominated by the anharmonic decay of hot A′1phonons at the K point into acoustic phonons with energies of about 10 meV

    A superconducting-nanowire 3-terminal electronic device

    Full text link
    In existing superconducting electronic systems, Josephson junctions play a central role in processing and transmitting small-amplitude electrical signals. However, Josephson-junction-based devices have a number of limitations including: (1) sensitivity to magnetic fields, (2) limited gain, (3) inability to drive large impedances, and (4) difficulty in controlling the junction critical current (which depends sensitively on sub-Angstrom-scale thickness variation of the tunneling barrier). Here we present a nanowire-based superconducting electronic device, which we call the nanocryotron (nTron), that does not rely on Josephson junctions and can be patterned from a single thin film of superconducting material with conventional electron-beam lithography. The nTron is a 3-terminal, T-shaped planar device with a gain of ~20 that is capable of driving impedances of more than 100 k{\Omega}, and operates in typical ambient magnetic fields at temperatures of 4.2K. The device uses a localized, Joule-heated hotspot formed in the gate to modulate current flow in a perpendicular superconducting channel. We have characterized the nTron, matched it to a theoretical framework, and applied it both as a digital logic element in a half-adder circuit, and as a digital amplifier for superconducting nanowire single-photon detectors pulses. The nTron has immediate applications in classical and quantum communications, photon sensing and astronomy, and its performance characteristics make it compatible with existing superconducting technologies. Furthermore, because the hotspot effect occurs in all known superconductors, we expect the design to be extensible to other materials, providing a path to digital logic, switching, and amplification in high-temperature superconductors
    corecore