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Nonequilibrium optical phonons are generated in graphite following the excitation of electron-hole

pairs with a femtosecond laser pulse. Their energy relaxation is probed by means of terahertz

pulses. We find that the hot-phonon lifetime increases by a factor of 2 when the sample temperature

decreases from 300 to 5 K. These results suggest that the energy relaxation in graphite at room

temperature and above is dominated by the anharmonic decay of hot A01 phonons at the K point into

acoustic phonons with energies of about 10 meV. VC 2011 American Institute of Physics.

[doi:10.1063/1.3663867]

In recent years, graphene and graphite have earned great

interest due to their ability to sustain high current

densities.1–4 For this reason, carbon-based materials are con-

sidered as promising alternatives to silicon for the develop-

ment of nanoelectronic devices. Transport experiments in

graphite and carbon nanotubes have revealed a critical driv-

ing electric field at which a crossover from ballistic to diffu-

sive transport occurs. This crossover was assigned to the

scattering of high-energy electrons with a minor subset of

strongly coupled optical phonons (SCOPs), which acquire a

higher effective temperature than the remaining, still cold

phonons.5 Density functional theory (DFT) calculations of

electron-phonon coupling have identified the SCOPs in

graphite as the modes with the highest energies (�0.2 eV) at

the C point (E2g) and the K point ðA01Þ of the Brillouin

zone.6,7

Hot SCOPs can also be generated by illuminating graph-

ite with a femtosecond laser pulse.8–20 The photoexcited

electrons thermalize and concurrently transfer most of their

excess energy to the small phonon subset of SCOPs within

0.5 ps.9–16,21 A quasi-equilibrium between electrons and

SCOPs is established. The hot phonons cool on a picosecond

timescale by energy transfer to the other, cold phonons. Up

to now, however, the pathway of the hot-phonon relaxation

has not yet been studied in detail. Theory work predicts that

the SCOP cooling proceeds via anharmonic decay, which

becomes significantly faster with increasing ambient temper-

ature.22 Such behavior has already been indicated by time-

resolved Raman spectroscopy at temperatures from 300 to

700 K.13 In order to elucidate the role of decay channels

involving low-energy phonons, experiments have to be per-

formed at lower temperatures as well.

In this letter, we make use of time-resolved THz spec-

troscopy to measure the energy decay rate of the hot-phonon

system in photoexcited, highly ordered pyrolytic graphite

(HOPG) as a function of temperature from 5 to 300 K. Due

to its low photon energy, THz radiation is particularly sensi-

tive to the distribution of charge carriers in the vicinity of the

Fermi energy.23 We observe a pronounced increase of the

SCOP lifetime with decreasing temperature. This result is

consistent with a dominant SCOP decay into acoustic modes

with energies of only 10 meV via anharmonic coupling.

We apply 12-fs laser pulses with 780-nm center wave-

length from an 80-MHz Ti:sapphire oscillator to generate

THz pulses via difference frequency mixing in a GaSe crys-

tal.24 The resulting THz pulses cover a range from 10 to 30

THz with a duration of 100 fs. The detection of the THz

electric field via electro-optic sampling in ZnTe allows us to

simultaneously measure both amplitude and phase of the

THz transient.25 Part of the oscillator output is used to excite

the sample prior to THz probing at variable delay times s.

The samples are prepared by peeling off flakes from a

HOPG crystal, resulting in a 20-nm thin film supported on a

diamond substrate which is mounted in a cryostat that can be

cooled down to 5 K. Transmitting under normal incidence,

the THz pulse probes the optical properties perpendicular to

the c axis. In our setup, we measure the electric fields E0(t)
and E0(t)þDEs(t) of a THz pulse that has traversed an unex-

cited and excited sample, respectively. Here, t denotes the

time axis of the THz transient.

Figure 1(a) shows the pump-induced changes DEs(t) in

the transmitted THz field along with the reference field E0(t).
In order to monitor the relaxation of the excited sample, we

FIG. 1. (Color online) (a) THz waveform E0(t) after transmission through

unexcited graphite and pump-induced changes DEs(t) at s¼ 0.5 ps. Arrow:

pump-induced signal maximum DEs(tmax). (b) DEs(tmax) as function of

pump-probe delay at 300 K at various pump fluences. Solid lines: biexpo-

nential fit.

a)Author to whom correspondence should be addressed: Electronic mail:

scheuch@fhi-berlin.mpg.de.
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set t¼ tmax, where the maximum of the pump-induced THz

transient is located. The resulting trace of DEs(tmax) vs.

pump-probe delay s is shown in Fig. 1(b) for two pump flu-

ences. All traces exhibit a biexponential decay with a fast

and slow component featuring time constants of 0.8 ps and

5.5 ps at 300 K, respectively. As indicated by the identical

slopes of the curves in Fig. 1(b), the slow time constants are

found to be independent of the applied laser fluence demon-

strating that they represent sample-intrinsic quantities.

Qualitatively similar two-component dynamics have

been observed using other time-resolved techniques.8,11–18

Further analysis9–12 and simulations based on Boltzmann

Peierls rate equations21 have shown that the faster signal

component reflects the thermalization of the electronic sub-

system via electron-electron and electron-phonon scattering

accompanied by energy transfer to the SCOPs. Since the

Fermi surface of graphite consists of only two small pockets,

the emitted phonons have a wavevector whose in-plane com-

ponent is located close to the C or K point of the Brillouin

zone.9 Despite the small fraction of available phonon states,

the remarkably fast electron cooling is brought about by the

strong electron-phonon coupling in graphite.6,7 After less

than 0.5 ps, the SCOPs have absorbed more than 90% of the

electronic excess energy, and a quasi-equilibrium of elec-

trons and SCOPs is established.9–12 The slower component

of the pump-probe signal is associated with the cooling of

the combined subsystem electrons plus hot SCOPs.9,10 Since

most of the pump energy is contained in the hot phonons, the

slow decay directly reflects the SCOP lifetime.10,21

In order to obtain deeper insights into the energy decay

of the SCOPs, we took pump-probe traces DEs(tmax) at vari-

ous ambient temperatures Ta. As shown in Fig. 2(a), the

decay of the slower component becomes faster with rising

Ta. We obtain the hot SCOP lifetimes as the time constant

1/c of the slower relaxation component of the signal.

Fig. 2(b) shows the resulting decay rate c vs. Ta. Note that c
increases by more than 100% when the ambient temperature

increases from 5 to 300 K.

The cooling of the electron-SCOP system proceeds via

annihilation of an electron-hole pair26 or a SCOP,22 both

resulting in phonon emission into cold lattice modes. The

first scenario is not expected to occur on the picosecond time

scale observed in our experiment as it involves emitted pho-

nons with energies more than one order of magnitude smaller

than those of the SCOPs.10 In addition, the coupling of these

phonons to the electrons is negligible as compared to the

SCOPs.6 Finally, according to the two-temperature model,26

the first mechanism should result in a slower decay with

increasing Ta, contrary to our findings [Fig. 2(b)]. Thus, it is

reasonable to assume the combined cooling of electrons and

hot SCOPs mediated by anharmonic phonon-phonon cou-

pling which induces the decay of a SCOP into two phonons

with lower energy10,13,22 [Fig. 3(a)]. Each decay channel j
contributes

cj ¼ cj0½1þ bðx0j; TaÞ þ bðxj � x0j; TaÞ� (1)

to the total energy decay rate c ¼
P

cj of the hot-phonon

system.27 Here, cj0 is the rate at vanishing sample tempera-

ture, b the Bose-Einstein distribution, xj the SCOP fre-

quency, and x0j and xj � x0j are the frequencies of the

emitted phonons. Each of these three-phonon processes has

to conserve phonon energy and wavevector, thus greatly

reducing the set of allowed final modes. Using the phonon

dispersion relation of graphite, an experimentally determined

function,7 it has been found22 that the lower phonon energy

�hx0j can only derive from a few narrow intervals between 0

and �hxj=2. Examples of decay events are shown in Fig. 3(b).

The interval with the lowest phonon energies is centered

around �hx0j ¼ 10:5 meV and associated with acoustic pho-

nons emitted in the decay of the A01 � K mode22 [blue arrows

in Fig. 3(b)]. Using Eq. (1), we calculate the normalized rate

c1/c10 of this decay channel as a function of Ta. As seen from

Fig. 2(b), c1 increases by more than a factor of 2 when the

temperature increases from 5 to 300 K. This strong tempera-

ture sensitivity arises, because the phonon energy �hx0 is

comparable to the thermal energy kBTa [shaded area in Fig.

3(b)]. In contrast, considering an allowed decay channel with

the next-higher energy �hx02 ¼ 60 meV of the emitted low-

energy phonon22 [orange arrows in Fig. 3(b)], we obtain a

curve with nearly negligible temperature dependence [j¼ 2

curve in Fig. 2(b)]. Similar curves are obtained for all

remaining decay channels j as they involve even higher ener-

gies �hx0j. An example is the symmetric decay of the E2g�C
mode [red arrows in Fig. 3(b)]. Therefore, it is sufficient to

fit a linear combination of c1 and c2 to the measured decay

curve of c vs. Ta, with c10 and c20 as fit parameters. Whereas

c2 merely contributes a constant offset, c1 sets the slope of

the curve. Best fit results are obtained for 1/c10¼ 22.1 ps and

1/c20¼ 30.5 ps [Fig. 2(b)]. Thus, our results are compatible

with the notion that the energy relaxation of the hot SCOPs

FIG. 2. (Color online) (a) Decay of DEs(tmax) vs. s at several temperatures.

(b) Ta dependence of the resulting scattering rates c (right axis). Solid lines:

normalized contributions (left axis) of phonon decay channels j¼ 1, 2 shown

in Fig. 3(b) and fit of c1þ c2 to the experimentally determined c.

FIG. 3. (Color online) (a) Schematic of phonon decay into two phonons.

Wavevector q and energy �hx conservation restricts the set of allowed decay

channels. G is a reciprocal lattice vector. (b) Schematic of graphite phonon

dispersion. Arrows: examples of allowed decay channels of SCOPs accord-

ing to Ref. 6. Shaded area indicates the thermal energy kBTa with

Ta� 300 K.
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is dominated by the decay of A01 phonons at the K point into

acoustic phonons with energies of about 10 meV.

Previous temperature-dependent studies of the SCOP

decay of photoexcited graphite made use of time-resolved

incoherent Raman scattering and report decay times of 2.2 ps

(Ref. 13) and 2.4 ps (Ref. 17) at 300 K, considerably shorter

than the 5.5 ps observed here. It should be noted that studies

based on other time-resolved techniques such as transient re-

flectance or transmittance,8,18 photoelectron spectroscopy,12

and electron diffraction16 also report a broad variety of time

constants of the slow signal component. This variety may be

related to the use of different probing techniques and sam-

ples of different thickness.18,20 Especially, since both THz

(Ref. 9) and Raman signal10 reflect the hot-phonon tempera-

ture, the different time constants measured most likely arise

from the samples used. In this work, the graphite thin film is

homogeneously excited, whereas transport effects into the

inhomogeneously excited bulk crystal used by Ref. 13 may

accelerate the dynamics inside the probed volume. However,

despite the different time constants, the relative changes as a

function of Ta are comparable for the Raman-based and our

work: an increase of the phonon decay rate by about 70%

was observed by increasing Ta from 300 to 700 K (Refs. 13

and 17), while a 100% increase from 5 to 300 K is found in

our experiment. We also note that our fit to the measured

c(Ta)/c(300 K) would also give a reasonable description of

the normalized time-resolved Raman data. Conversely, the

model of Ref. 13 would not yield a good description of our

data as it involves too high phonon energies �hx0. In other

words, low-temperature experiments allow a better identifi-

cation of the phonon decay processes involving small pho-

non energies of the order of 10 meV.

We finally compare our results to DFT calculations22,28

of the lifetime of various phonon modes at the C and K

points. Our results agree well with the predicted temperature

dependence of the A01 � K lifetime [see Fig. 4(a) in Ref. 22]

as well as the branching ratio of the different decay processes

j; we have c01=
P

c0j ¼ 0:58 as inferred from our experiment

and 0.56 from theory. Absolute numbers agree roughly:

1/c10¼ 22.1 ps, as derived from experiment, is larger than

1/c10¼ 8.2 ps/0.56¼ 14.6 ps predicted by theory. However,

theory22 also suggests a strong contribution from the decay

of the E2g�C mode, with a much shorter lifetime of about 3.3

ps at vanishing temperature. Such short phonon lifetimes are

not observed in our experiment. The reason for this discrep-

ancy is not yet understood.

In conclusion, we have observed a pronounced accelera-

tion of the hot-phonon decay in graphite in the temperature

range when temperature is increased from 5 to 300 K. Our

results suggest that this relaxation proceeds via anharmonic

decay of hot SCOPs into acoustic phonons with low energy.

As a consequence, the hot-phonon population observed in

high-field transport in graphite and graphene4 should roughly

scale with the inverse of the ambient temperature. This

notion would imply an increased resistance and a lower

breakdown threshold for cooled graphite-based devices.

The authors would like to thank the German Research

Foundation DFG for financial support via Sfb 450.
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