1,592 research outputs found

    Does Luttinger liquid behaviour survive in an atomic wire on a surface?

    Full text link
    We form a highly simplified model of an atomic wire on a surface by the coupling of two one-dimensional chains, one with electron-electron interactions to represent the wire and and one with no electron-electron interactions to represent the surface. We use exact diagonalization techniques to calculate the eigenstates and response functions of our model, in order to determine both the nature of the coupling and to what extent the coupling affects the Luttinger liquid properties we would expect in a purely one-dimensional system. We find that while there are indeed Luttinger liquid indicators present, some residual Fermi liquid characteristics remain.Comment: 14 pages, 7 figures. Submitted to J Phys

    Magnetoconductance oscillations in quasiballistic multimode nanowires

    Full text link
    We calculate the conductance of quasi-one-dimensional nanowires with electronic states confined to a surface charge layer, in the presence of a uniform magnetic field. Two-terminal magnetoconductance (MC) between two leads deposited on the nanowire via tunnel barriers is dominated by density-of-states (DOS) singularities, when the leads are well apart. There is also a mesoscopic correction due to a higher-order coherent tunneling between the leads for small lead separation. The corresponding MC structure depends on the interference between electron propagation via different channels connecting the leads, which in the simplest case, for the magnetic field along the wire axis, can be crudely characterized by relative winding numbers of paths enclosing the magnetic flux. In general, the MC oscillations are aperiodic, due to the Zeeman splitting, field misalignment with the wire axis, and a finite extent of electron distribution across the wire cross section, and are affected by spin-orbit coupling. The quantum-interference MC traces contain a wealth of information about the electronic structure of multichannel wires, which would be complimentary to the DOS measurements. We propose a four-terminal configuration to enhance the relative contribution of the higher-order tunneling processes and apply our results to realistic InAs nanowires carrying several quantum channels in the surface charge-accumulation layer.Comment: 11 pages, 8 figure

    A strong-coupling expansion for the Hubbard model

    Full text link
    We reconsider the strong-coupling expansion for the Hubbard model recently introduced by Sarker and Pairault {\it et al.} By introducing slave particles that act as projection operators onto the empty, singly occupied and doubly occupied atomic states, the perturbation theory around the atomic limit distinguishes between processes that do conserve or do not conserve the total number of doubly occupied sites. This allows for a systematic t/Ut/U expansion that does not break down at low temperature (tt being the intersite hopping amplitude and UU the local Coulomb repulsion). The fermionic field becomes a two-component field, which reflects the presence of the two Hubbard bands. The single-particle propagator is naturally expressed as a function of a 2×22 \times 2 matrix self-energy. Furthermore, by introducing a time- and space-fluctuating spin-quantization axis in the functional integral, we can expand around a ``non-degenerate'' ground-state where each singly occupied site has a well defined spin direction (which may fluctuate in time). This formalism is used to derive the effective action of charge carriers in the lower Hubbard band to first order in t/Ut/U. We recover the action of the t-J model in the spin-hole coherent-state path integral. We also compare our results with those previously obtained by studying fluctuations around the large-UU Hartree-Fock saddle point.Comment: 20 pages RevTex, 3 figure

    Features of spin-charge separation in the equilibrium conductance through finite rings

    Get PDF
    We calculate the conductance through rings with few sites LL described by the tJt-J model, threaded by a magnetic flux Φ\Phi and weakly coupled to conducting leads at two arbitrary sites. The model can describe a circular array of quantum dots with large charging energy UU in comparison with the nearest-neighbor hopping tt. We determine analytically the particular values of Φ\Phi for which a depression of the transmittance is expected as a consequence of spin-charge separation. We show numerically that the equilibrium conductance at zero temperature is depressed at those particular values of Φ\Phi for most systems, in particular at half filling, which might be easier to realize experimentally.Comment: 8 pages, 7 figure

    Mechanism of CDW-SDW Transition in One Dimension

    Full text link
    The phase transition between charge- and spin-density-wave (CDW, SDW) phases is studied in the one-dimensional extended Hubbard model at half-filling. We discuss whether the transition can be described by the Gaussian and the spin-gap transitions under charge-spin separation, or by a direct CDW-SDW transition. We determine these phase boundaries by level crossings of excitation spectra which are identified according to discrete symmetries of wave functions. We conclude that the Gaussian and the spin-gap transitions take place separately from weak- to intermediate-coupling region. This means that the third phase exists between the CDW and the SDW states. Our results are also consistent with those of the strong-coupling perturbative expansion and of the direct evaluation of order parameters.Comment: 5 pages(REVTeX), 5 figures(EPS), 1 table, also available from http://wwwsoc.nacsis.ac.jp/jps/jpsj/1999/p68a/p68a42/p68a42h/p68a42h.htm

    Renormalization-group study of a magnetic impurity in a Luttinger liquid

    Full text link
    A generalized Anderson model for a magnetic impurity in an interacting one-dimensional electron gas is studied via a mapping onto a classical Coulomb gas. For weak potential scattering, the local-moment parameter regime expands as repulsive bulk interactions become stronger, but the Kondo scale for the quenching of the impurity moment varies nonmonotonically. There also exist two regimes dominated by backward potential scattering: one in which the impurity is nonmagnetic, and another in which an unquenched local moment survives down to very low temperatures.Comment: REVTeX, 4 pages, 3 epsf-embedded EPS figure

    Near-infrared K-band Spectroscopic Investigation of Seyfert 2 Nuclei in the CfA and 12 Micron Samples

    Full text link
    We present near-infrared K-band slit spectra of the nuclei of 25 Seyfert 2 galaxies in the CfA and 12 micron samples. The strength of the CO absorption features at 2.3-2.4 micron produced by stars is measured in terms of a spectroscopic CO index. A clear anti-correlation between the observed CO index and the nuclear K-L color is present, suggesting that a featureless hot dust continuum heated by an AGN contributes significantly to the observed K-band fluxes in the nuclei of Seyfert 2 galaxies. After correction for this AGN contribution, we estimate nuclear stellar K-band luminosities for all sources, and CO indices for sources with modestly large observed CO indices. The corrected CO indices for 10 (=40%) Seyfert 2 nuclei are found to be as high as those observed in star-forming or elliptical (=spheroidal) galaxies. We combine the K-band data with measurements of the L-band 3.3 micron polycyclic aromatic hydrocarbon (PAH) emission feature, another powerful indicator for star-formation, and find that the 3.3 micron PAH to K-band stellar luminosity ratios are substantially smaller than those of starburst galaxies. Our results suggest that the 3.3 micron PAH emission originates in the putative nuclear starbursts in the dusty tori surrounding the AGNs, because of its high surface brightness, whereas the K-band CO absorption features detected at the nuclei are dominated by old bulge (=spheroid) stars, and thus may not be a powerful indicator for the nuclear starbursts. We see no clear difference in the strength of the CO absorption and PAH emission features between the CfA and 12 micron Seyfert 2s.Comment: 28 pages, 6 figures, accepted for publication in ApJ (10 October 2004, v614 issue

    Nachweis über die Dauer der Infektionsfähigkeit von Steinbrand- (Tilletia caries) und Zwergsteinbrandsporen (Tilletia controversa) im Boden und Stallmist in Biobetrieben

    Get PDF
    This research work is scoping on whether in the case of huge infestation with common and/or dwarf bunt farmers have to stop temporarily wheat cultivation and furthermore how many years wheat should not be grown on these fields. For answering these questions, 3-years randomized crop rotation field trials are performed at 3 sites with 4 replicates on infested fields with crop rotation links commonly used in organic farming to determine whether it is possible to decrease the spore potential in soil. Brassica species setting free isothiocyanate after mulching are cultivated to examine if it is possible to reduce the viability of spores. Additionally, the influence of stable manure on bunt spores it tested. Soil samples are taken half-yearly from each plot and common and dwarf bunt spore potential is determined under the microscope as well as the germination ability of the spores on agar plates. Variation of the number of spores in stable manure is determined half-yearly during storage. Physical and chemical facts hamper a really high finding of spores out of soil. Retrieval rates of about 50 % could be achieved at present. After one year storage, spore potential in the stable manure has been decreased by more than 90 %. Optimal germination conditions for common and dwarf bunt spores from bunt balls have been elaborated and established. These conditions are tested at present with spores out of soil

    Vacuum properties of a Non-Local Thirring-Like Model

    Get PDF
    We use path-integral methods to analyze the vacuum properties of a recently proposed extension of the Thirring model in which the interaction between fermionic currents is non-local. We calculate the exact ground state wave functional of the model for any bilocal potential, and also study its long-distance behavior. We show that the ground state wave functional has a general factored Jastrow form. We also find that it posess an interesting symmetry involving the interchange of density-density and current-current interactions.Comment: 25 pages, latex, no figure

    Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ

    Get PDF
    The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measured dispersions can be consistently mapped onto the one-dimensional Hubbard model at finite doping. This interpretation is further supported by a remarkable transfer of spectral weight as function of temperature. The ARPES data thus show spectroscopic signatures of spin-charge separation on an energy scale of the conduction band width.Comment: 4 pages, 4 figures; to appear in PR
    corecore