20 research outputs found
Harmonic analysis on the Möbius gyrogroup
In this paper we propose to develop harmonic analysis on the Poincaré ball , a model of the n-dimensional real hyperbolic space. The Poincaré ball is the open ball of the Euclidean n-space with radius , centered at the origin of and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in . For any and an arbitrary parameter we study the -translation, the -convolution, the eigenfunctions of the -Laplace-Beltrami operator, the -Helgason Fourier transform, its inverse transform and the associated Plancherel's Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when the resulting hyperbolic harmonic analysis on tends to the standard Euclidean harmonic analysis on , thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on