38 research outputs found

    Fast computation of distance estimators

    Get PDF
    BACKGROUND: Some distance methods are among the most commonly used methods for reconstructing phylogenetic trees from sequence data. The input to a distance method is a distance matrix, containing estimated pairwise distances between all pairs of taxa. Distance methods themselves are often fast, e.g., the famous and popular Neighbor Joining (NJ) algorithm reconstructs a phylogeny of n taxa in time O(n(3)). Unfortunately, the fastest practical algorithms known for Computing the distance matrix, from n sequences of length l, takes time proportional to l·n(2). Since the sequence length typically is much larger than the number of taxa, the distance estimation is the bottleneck in phylogeny reconstruction. This bottleneck is especially apparent in reconstruction of large phylogenies or in applications where many trees have to be reconstructed, e.g., bootstrapping and genome wide applications. RESULTS: We give an advanced algorithm for Computing the number of mutational events between DNA sequences which is significantly faster than both Phylip and Paup. Moreover, we give a new method for estimating pairwise distances between sequences which contain ambiguity Symbols. This new method is shown to be more accurate as well as faster than earlier methods. CONCLUSION: Our novel algorithm for Computing distance estimators provides a valuable tool in phylogeny reconstruction. Since the running time of our distance estimation algorithm is comparable to that of most distance methods, the previous bottleneck is removed. All distance methods, such as NJ, require a distance matrix as input and, hence, our novel algorithm significantly improves the overall running time of all distance methods. In particular, we show for real world biological applications how the running time of phylogeny reconstruction using NJ is improved from a matter of hours to a matter of seconds

    Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site

    Get PDF
    Arthropod-borne viruses (arboviruses) are important human pathogens for which there are no specific antiviral medicines. The abundance of genetically distinct arbovirus species, coupled with the unpredictable nature of their outbreaks, has made the development of virus-specific treatments challenging. Instead, we have defined and targeted a key aspect of the host innate immune response to virus at the arthropod bite that is common to all arbovirus infections, potentially circumventing the need for virus-specific therapies. Using mouse models and human skin explants, we identify innate immune responses by dermal macrophages in the skin as a key determinant of disease severity. Post-exposure treatment of the inoculation site by a topical TLR7 agonist suppressed both the local and subsequent systemic course of infection with a variety of arboviruses from the Alphavirus, Flavivirus, and Orthobunyavirus genera. Clinical outcome was improved in mice after infection with a model alphavirus. In the absence of treatment, antiviral interferon expression to virus in the skin was restricted to dermal dendritic cells. In contrast, stimulating the more populous skin-resident macrophages with a TLR7 agonist elicited protective responses in key cellular targets of virus that otherwise proficiently replicated virus. By defining and targeting a key aspect of the innate immune response to virus at the mosquito bite site, we have identified a putative new strategy for limiting disease after infection with a variety of genetically distinct arboviruses

    The mode and tempo of hepatitis C virus evolution within and among hosts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) is a rapidly-evolving RNA virus that establishes chronic infections in humans. Despite the virus' public health importance and a wealth of sequence data, basic aspects of HCV molecular evolution remain poorly understood. Here we investigate three sets of whole HCV genomes in order to directly compare the evolution of whole HCV genomes at different biological levels: within- and among-hosts. We use a powerful Bayesian inference framework that incorporates both among-lineage rate heterogeneity and phylogenetic uncertainty into estimates of evolutionary parameters.</p> <p>Results</p> <p>Most of the HCV genome evolves at ~0.001 substitutions/site/year, a rate typical of RNA viruses. The antigenically-important <it>E1/E2 </it>genome region evolves particularly quickly, with correspondingly high rates of positive selection, as inferred using two related measures. Crucially, in this region an exceptionally higher rate was observed for within-host evolution compared to among-host evolution. Conversely, higher rates of evolution were seen among-hosts for functionally relevant parts of the <it>NS5A </it>gene. There was also evidence for slightly higher evolutionary rate for HCV subtype 1a compared to subtype 1b.</p> <p>Conclusions</p> <p>Using new statistical methods and comparable whole genome datasets we have quantified, for the first time, the variation in HCV evolutionary dynamics at different scales of organisation. This confirms that differences in molecular evolution between biological scales are not restricted to HIV and may represent a common feature of chronic RNA viral infection. We conclude that the elevated rate observed in the <it>E1/E2 </it>region during within-host evolution more likely results from the reversion of host-specific adaptations (resulting in slower long-term among-host evolution) than from the preferential transmission of slowly-evolving lineages.</p

    Identification of novel RNA secondary structures within the hepatitis C virus genome reveals a cooperative involvement in genome packaging

    Get PDF
    The specific packaging of the hepatitis C virus (HCV) genome is hypothesised to be driven by Core- RNA interactions. To identify the regions of the viral genome involved in this process, we used SELEX (systematic evolution of ligands by exponential enrichment) to identify RNA aptamers which bind specifically to Core in vitro. Comparison of these aptamers to multiple HCV genomes revealed the presence of a conserved terminal loop motif within short RNA stem-loop structures. We postulated that interactions of these motifs, as well as sub-motifs which were present in HCV genomes at statistically significant levels, with the Core protein may drive virion assembly. We mutated 8 of these predicted motifs within the HCV infectious molecular clone JFH-1, thereby producing a range of mutant viruses predicted to possess altered RNA secondary structures. RNA replication and viral titre were unaltered in viruses possessing only one mutated structure. However, infectivity titres were decreased in viruses possessing a higher number of mutated regions. This work thus identified multiple novel RNA motifs which appear to contribute to genome packaging. We suggest that these structures act as cooperative packaging signals to drive specific RNA encapsidation during HCV assembly

    AN EXPERIMENTAL RESEARCH ON THE SUBSIDENCE OF GROUND (II)

    Get PDF
    In some cities and industrial areas developed on coastal alluvial plains, the groundsubsidences caused by pumping of enormous volume of water are remarkable at present, and these phenomena become the ohject of public attension in Japan.In this paper some results obtained hy the large scale model tests in the laboratorywhich have been performed in order to make clear the characteristics and the mechanismof the ground subsidence are discrihed. Main objects of experiments are as follows(1) Measuring the variation of pore water pressure and settlement of the aquifers and theaquicludes caused hy the following variation of the artesian pressure in the aquifers, viz.Lowering, recovering or their repeating. (2) Measuring the variation of pore water pressureof the aquicludes hy changing the surface water level.In some cities and industrial areas developed on coastal alluvial plains, the groundsubsidences caused by pumping of enormous volume of water are remarkable at present,and these phenomena become the ohject of public attension in Japan.In this paper some results obtained hy the large scale model tests in the laboratorywhich have been performed in order to make clear the characteristics and the mechanismof the ground subsidence are discrihed. Main objects of experiments are as follows(1) Measuring the variation of pore water pressure and settlement of the aquifers and theaquicludes caused hy the following variation of the artesian pressure in the aquifers, viz.Lowering, recovering or their repeating. (2) Measuring the variation of pore water pressureof the aquicludes hy changing the surface water level

    Cross-utilisation of template RNAs by alphavirus replicases

    No full text
    Most alphaviruses (family Togaviridae) including Sindbis virus (SINV) and other human pathogens, are transmitted by arthropods. The first open reading frame in their positive strand RNA genome encodes for the non-structural polyprotein, a precursor to four separate subunits of the replicase. The replicase interacts with cis-acting elements located near the intergenic region and at the ends of the viral RNA genome. A trans-replication assay was developed and used to analyse the template requirements for nine alphavirus replicases. Replicases of alphaviruses of the Semliki Forest virus complex were able to cross-utilize each other’s templates as well as those of outgroup alphaviruses. Templates of outgroup alphaviruses, including SINV and the mosquito-specific Eilat virus, were promiscuous; in contrast, their replicases displayed a limited capacity to use heterologous templates, especially in mosquito cells. The determinants important for efficient replication of template RNA were mapped to the 5' region of the genome. For SINV these include the extreme 5'- end of the genome and sequences corresponding to the first stem-loop structure in the 5' untranslated region. Mutations introduced in these elements drastically reduced infectivity of recombinant SINV genomes. The trans-replicase tools and approaches developed here can be instrumental in studying alphavirus recombination and evolution, but
    corecore