19 research outputs found

    A case of maxillary sarcoma in a chimpanzee (Pan troglodytes).

    Get PDF
    Oral malignancy is rare in chimpanzees. A 34-year-old female chimpanzee (Pan troglodytes) at Kumamoto Sanctuary, Japan, had developed it. Treatment is technically difficult for chimpanzees while malignant neoplasm is seemingly rising in captive populations. Widespread expert discussion, guidelines for treatment, especially for great apes in terminal stages is urgently needed

    An astrocyte-dependent mechanism for neuronal rhythmogenesis

    Full text link
    Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a rhythmic firing pattern. Here we show in the rat trigeminal sensori-motor circuit for mastication that this ability depends on regulation of the extracellular Ca2+ concentration ([Ca2+]e) by astrocytes. In this circuit, astrocytes respond to sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator prevents neurons from generating a rhythmic bursting pattern. This ability is restored by adding S100b, an astrocytic Ca2+-binding protein, to the extracellular space, while application of an anti-S100b antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: the capacity to change firing pattern. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity

    Activation-induced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice

    No full text
    Activation-induced cytidine deaminase (AID), which is essential to both class switch recombination and somatic hypermutation of the Ig gene, is expressed in many types of human B cell lymphoma/leukemia. AID is a potent mutator because it is involved in DNA breakage not only of Ig but also of other genes, including proto-oncogenes. Recent studies suggest that AID is required for chromosomal translocation involving cmyc and Ig loci. However, it is unclear whether AID plays other roles in tumorigenesis. We examined the effect of AID deficiency on the generation of surface Ig-positive B cell lymphomas in Emu-cmyc transgenic mice. Almost all lymphomas that developed in AID-deficient transgenic mice were pre-B cell lymphomas, whereas control transgenic mice had predominantly B cell lymphomas, indicating that AID is required for development of B but not pre-B cell lymphomas from cmyc overexpressing tumor progenitors. Thus, AID may play multiple roles in B cell lymphomagenesis

    Combined Cohesin–RUNX1 deficiency synergistically perturbs chromatin looping and causes myelodysplastic syndromes

    No full text
    STAG2 encodes a cohesin component and is frequently mutated in myeloid neo-plasms, showing highly significant comutation patterns with other drivers, including RUNX1. However, the molecular basis of cohesin-mutated leukemogenesis remains poorly understood. Here we show a critical role of an interplay between STAG2 and RUNX1 in the regulation of enhancer– promoter looping and transcription in hematopoiesis. Combined loss of STAG2 and RUNX1, which colocalize at enhancer-rich, CTCF-deficient sites, synergistically attenuates enhancer–promoter loops, particularly at sites enriched for RNA polymerase II and Mediator, and deregulates gene expression, leading to myeloid-skewed expansion of hematopoietic stem/progenitor cells (HSPC) and myelodys-plastic syndromes (MDS) in mice. Attenuated enhancer–promoter loops in STAG2/RUNX1–deficient cells are associated with downregulation of genes with high basal transcriptional pausing, which are important for regulation of HSPCs. Downregulation of high-pausing genes is also confirmed in STAG2– cohesin-mutated primary leukemia samples. Our results highlight a unique STAG2–RUNX1 interplay in gene regulation and provide insights into cohesin-mutated leukemogenesis. SIGNIFICANCE: We demonstrate a critical role of an interplay between STAG2 and a master transcription factor of hematopoiesis, RUNX1, in MDS development, and further reveal their contribution to regulation of high-order chromatin structures, particularly enhancer–promoter looping, and the link between transcriptional pausing and selective gene dysregulation caused by cohesin deficiency
    corecore