46 research outputs found

    A Balance of BMP and Notch Activity Regulates Neurogenesis and Olfactory Nerve Formation

    Get PDF
    Although the function of the adult olfactory system has been thoroughly studied, the molecular mechanisms regulating the initial formation of the olfactory nerve, the first cranial nerve, remain poorly defined. Here, we provide evidence that both modulated Notch and bone morphogenetic protein (BMP) signaling affect the generation of neurons in the olfactory epithelium and reduce the number of migratory neurons, so called epithelioid cells. We show that this reduction of epithelial and migratory neurons is followed by a subsequent failure or complete absence of olfactory nerve formation. These data provide new insights into the early generation of neurons in the olfactory epithelium and the initial formation of the olfactory nerve tract. Our results present a novel mechanism in which BMP signals negatively affect Notch activity in a dominant manner in the olfactory epithelium, thereby regulating neurogenesis and explain why a balance of BMP and Notch activity is critical for the generation of neurons and proper development of the olfactory nerve

    Signaling from the Sympathetic Nervous System Regulates Hematopoietic Stem Cell Emergence during Embryogenesis

    Get PDF
    SummaryThe first adult-repopulating hematopoietic stem cells (HSCs) emerge in the aorta-gonads-mesonephros (AGM) region of the embryo. We have recently identified the transcription factor Gata3 as being upregulated in this tissue specifically at the time of HSC emergence. We now demonstrate that the production of functional and phenotypic HSCs in the AGM is impaired in the absence of Gata3. Furthermore, we show that this effect on HSC generation is secondary to the role of Gata3 in the production of catecholamines, the mediators of the sympathetic nervous system (SNS), thus making these molecules key components of the AGM HSC niche. These findings demonstrate that the recently described functional interplay between the hematopoietic system and the SNS extends to the earliest stages of their codevelopment and highlight the fact that HSC development needs to be viewed in the context of the development of other organs

    Die Rolle der Zink-Finger-Transkriptionsfaktoren Gata2 und Gata3 in der Entwicklung sympathischer Nervenzellen

    No full text

    Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves Notch signaling.

    No full text
    [anonym]Unten links: Nummer "12625"Rückseite, unten Mitte: "BC

    Neuroblastoma Phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons

    No full text
    Neuroblastoma is a pediatric tumor that is thought to arise from autonomic precursors in the neural crest. Mutations in the PHOX2B gene have been observed in familial and sporadic forms of neuroblastoma and represent the first defined genetic predisposition for neuroblastoma. Here, we address the mechanisms that may underlie this predisposition, comparing the function of wild-type and mutant Phox2b proteins ectopically expressed in proliferating, embryonic sympathetic neurons. Phox2b displays a strong antiproliferative effect, which is lost in all Phox2b neuroblastoma variants analyzed. In contrast, an increase in sympathetic neuron proliferation is elicited by Phox2b variants with mutations in the homeodomain when endogenous Phox2b levels are lowered by siRNA-mediated knockdown to mimic the situation of heterozygous PHOX2B mutations in neuroblastoma. The increased proliferation is blocked by Hand2 knockdown and the antiproliferative Phox2b effects are rescued by Hand2 overexpression, implying Hand2 in Phox2b-mediated proliferation control. APhox2b variant with a nonsense mutation in the homeodomain elicits, in addition, a decreased expression of characteristic marker genes. Together, these results suggest that PHOX2B mutations predispose to neuroblastoma by increasing proliferation and promoting dedifferentiation of cells in the sympathoadrenergic lineage
    corecore