906 research outputs found

    Kongenitale Nävi im Kindesalter

    Get PDF
    Zusammenfassung: Nävi stellen kongenitale hamartomatöse Fehlbildungen unterschiedlicher Bestandteile der Haut dar. Am häufigsten treten kongenitale melanozytäre Nävi (CMN) auf, gefolgt von Nävi epithelialen Ursprungs (epidermale und organoide Nävi). Insbesondere große CMN können zu schwerwiegenden Komplikationen führen, und das Management der Betroffenen stellt ab Geburt eine Herausforderung dar. Entgegen früheren Annahmen ist das Risiko einer malignen Entartung von CMN insgesamt als eher gering anzusehen, steigt jedoch in speziellen Situationen relevant an. Nicht zu vernachlässigen sind mögliche extrakutane Symptome im Falle einer ZNS-Beteiligung, und frühe bildgebende Untersuchungen gehören heute zur Routinediagnostik. Chirurgische Maßnahmen haben noch immer einen hohen Stellenwert in der Behandlung von CMN, die Indikation dazu ist jedoch von Fall zu Fall individuell abzuwägen. Nicht zuletzt leiden die Patienten häufig stark an der ästhetischen Beeinträchtigung durch ihr Muttermal, sodass in der Behandlung auch diesem Punkt Rechnung getragen werden muss. Der Naevus sebaceus ist der häufigste Vertreter der epithelialen Nävi. In 2-13% treten darin Zusatztumoren auf, und eine frühe chirurgische Exzision ist in den meisten Fällen nicht zuletzt auch aus ästhetischen Überlegungen sinnvoll. Epidermale Nävi erfordern bei generalisierter Ausdehnung Zusatzuntersuchungen zum Ausschluss von assoziierten ophthalmologischen, kardialen oder neurologischen Fehlbildunge

    Detecting periodicity in experimental data using linear modeling techniques

    Get PDF
    Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect periodicities in experimental data in the physical and biological sciences. We propose a new method which is more reliable than traditional techniques, and is able to make clear identification of periodic behavior when traditional techniques do not. This technique is based on an information theoretic reduction of linear (autoregressive) models so that only the essential features of an autoregressive model are retained. These models we call reduced autoregressive models (RARM). The essential features of reduced autoregressive models include any periodicity present in the data. We provide theoretical and numerical evidence from both experimental and artificial data, to demonstrate that this technique will reliably detect periodicities if and only if they are present in the data. There are strong information theoretic arguments to support the statement that RARM detects periodicities if they are present. Surrogate data techniques are used to ensure the converse. Furthermore, our calculations demonstrate that RARM is more robust, more accurate, and more sensitive, than traditional spectral techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified styl

    Test your surrogate data before you test for nonlinearity

    Get PDF
    The schemes for the generation of surrogate data in order to test the null hypothesis of linear stochastic process undergoing nonlinear static transform are investigated as to their consistency in representing the null hypothesis. In particular, we pinpoint some important caveats of the prominent algorithm of amplitude adjusted Fourier transform surrogates (AAFT) and compare it to the iterated AAFT (IAAFT), which is more consistent in representing the null hypothesis. It turns out that in many applications with real data the inferences of nonlinearity after marginal rejection of the null hypothesis were premature and have to be re-investigated taken into account the inaccuracies in the AAFT algorithm, mainly concerning the mismatching of the linear correlations. In order to deal with such inaccuracies we propose the use of linear together with nonlinear polynomials as discriminating statistics. The application of this setup to some well-known real data sets cautions against the use of the AAFT algorithm.Comment: 14 pages, 15 figures, submitted to Physical Review

    A Robust Method for Detecting Interdependences: Application to Intracranially Recorded EEG

    Full text link
    We present a measure for characterizing statistical relationships between two time sequences. In contrast to commonly used measures like cross-correlations, coherence and mutual information, the proposed measure is non-symmetric and provides information about the direction of interdependence. It is closely related to recent attempts to detect generalized synchronization. However, we do not assume a strict functional relationship between the two time sequences and try to define the measure so as to be robust against noise, and to detect also weak interdependences. We apply our measure to intracranially recorded electroencephalograms of patients suffering from severe epilepsies.Comment: 29 pages, 5 figures, paper accepted for publication in Physica

    Magnitude and Sign Correlations in Heartbeat Fluctuations

    Full text link
    We propose an approach for analyzing signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and analyzing their scaling properties. We show that signals with identical long-range correlations can exhibit different time organization for the magnitude and sign. We find that the magnitude series relates to the nonlinear properties of the original time series, while the sign series relates to the linear properties. We apply our approach to the heartbeat interval series and find that the magnitude series is long-range correlated, while the sign series is anticorrelated and that both magnitude and sign series may have clinical applications.Comment: 4 pages,late

    Predicting the Detectability of Thin Gaseous Plumes in Hyperspectral Images Using Basis Vectors

    Get PDF
    This paper describes a new method for predicting the detectability of thin gaseous plumes in hyperspectral images. The novelty of this method is the use of basis vectors for each of the spectral channels of a collection instrument to calculate noise-equivalent concentration-pathlengths instead of matching scene pixels to absorbance spectra of gases in a library. This method provides insight into regions of the spectrum where gas detection will be relatively easier or harder, as influenced by ground emissivity, temperature contrast, and the atmosphere. Our results show that data collection planning could be influenced by information about when potential plumes are likely to be over background segments that are most conducive to detection

    The Necessity for a Time Local Dimension in Systems with Time Varying Attractors

    Full text link
    We show that a simple non-linear system of ordinary differential equations may possess a time varying attractor dimension. This indicates that it is infeasible to characterize EEG and MEG time series with a single time global dimension. We suggest another measure for the description of non-stationary attractors.Comment: 13 Postscript pages, 12 Postscript figures (figures 3b and 4 by request from Y. Ashkenazy: [email protected]

    Statistics of finite-time Lyapunov exponents in the Ulam map

    Full text link
    The statistical properties of finite-time Lyapunov exponents at the Ulam point of the logistic map are investigated. The exact analytical expression for the autocorrelation function of one-step Lyapunov exponents is obtained, allowing the calculation of the variance of exponents computed over time intervals of length nn. The variance anomalously decays as 1/n21/n^2. The probability density of finite-time exponents noticeably deviates from the Gaussian shape, decaying with exponential tails and presenting 2n12^{n-1} spikes that narrow and accumulate close to the mean value with increasing nn. The asymptotic expression for this probability distribution function is derived. It provides an adequate smooth approximation to describe numerical histograms built for not too small nn, where the finiteness of bin size trimmes the sharp peaks.Comment: 6 pages, 4 figures, to appear in Phys. Rev.

    Critical and Near-Critical Branching Processes

    Get PDF
    Scale-free dynamics in physical and biological systems can arise from a variety of causes. Here, we explore a branching process which leads to such dynamics. We find conditions for the appearance of power laws and study quantitatively what happens to these power laws when such conditions are violated. From a branching process model, we predict the behavior of two systems which seem to exhibit near scale-free behavior--rank-frequency distributions of number of subtaxa in biology, and abundance distributions of genotypes in an artificial life system. In the light of these, we discuss distributions of avalanche sizes in the Bak-Tang-Wiesenfeld sandpile model.Comment: 9 pages LaTex with 10 PS figures. v.1 of this paper contains results from non-critical sandpile simulations that were excised from the published versio

    Quantitative analysis by renormalized entropy of invasive electroencephalograph recordings in focal epilepsy

    Get PDF
    Invasive electroencephalograph (EEG) recordings of ten patients suffering from focal epilepsy were analyzed using the method of renormalized entropy. Introduced as a complexity measure for the different regimes of a dynamical system, the feature was tested here for its spatio-temporal behavior in epileptic seizures. In all patients a decrease of renormalized entropy within the ictal phase of seizure was found. Furthermore, the strength of this decrease is monotonically related to the distance of the recording location to the focus. The results suggest that the method of renormalized entropy is a useful procedure for clinical applications like seizure detection and localization of epileptic foci.Comment: 10 pages, 5 figure
    corecore