141 research outputs found

    Role of mprF1 and mprF2 in the Pathogenicity of Enterococcus faecalis

    Get PDF
    Aujourd hui, Enterococcus faecalis est considéré comme l un des plus importants agents pathogènes causant des maladies nosocomiales. En raison de sa résistance innée et acquise aux antibiotiques, l identification de nouvelles cibles pour le traitement de cette bactérie est une grande priorité. Le facteur Multiple Peptide Résistance (MprF), qui a été décrit en premier chez Staphylococcus aureus, modifie le phosphatidylglycérol avec de la lysine et réduit ainsi la charge négative de l enveloppe cellulaire. Ceci a comme conséquence d augmenter la résistance aux peptides antimicrobiens cationiques (PAC). Deux gènes paralogues putatifs (mprF1 et mprF2) ont été identifiés chez E. faecalis par recherche BLAST en utilisant le gène décrit chez S. aureus. Une caractérisation de ces deux gènes d E. faecalis ainsi que des mécanismes conduisant à une résistance aux PAC, pourrait aider à développer des nouvelles stratégies thérapeutiques contre ce pathogène. Deux mutants de délétion et un double mutant ont été construits par recombinaison homologue chez E. faecalis. L analyse des phospholipides des membranes cytoplasmiques des deux mutants mprF1 et mprF2 par chromatographie sur couche mince a montré que seule l inactivation de mprF2 inhibe la synthèse de trois amino-phosphatidlyglycérol distincts (comme la Lysine-PG, l Alanine-PG et l Arginine-PG). De plus, le mutant mprF2 est également plus sensible aux PAC que la souche sauvage. La capacité de formation d un biofilm est généralement considérée comme un facteur important de virulence, ce qui est également le cas pour les entérocoques. Le mutant mprF2 montre une capacité accrue dans ce phénomène. Ceci semble être du à une augmentation de la concentration d ADN extracellulaire dans le biofilm formé par ce mutant. Curieusement, cette augmentation est indépendante d une autolyse. Le mutant mprF2 est également plus résistant à l opsonophagocytose. Cependant, le gène mprF2 ne joue aucun rôle dans les bactériémies de souris et les endocardites de rats.En revanche, aucun phénotype n a été trouvé pour un mutant mprF1 jusqu à présent. Cette mutation ne modifie ni la synthèse de l aminoacyl-PG en condition de laboratoire ni la résistance aux PAC et à l opsonophagocytose. Par conséquent, il semble que mprF2 soit le seul gène mprF fonctionnel chez E. faecalis. Néanmoins, contrairement à d autres bactéries, mprF2 ne semble pas être un facteur de virulence majeur pour cette espèce.Enterococcus faecalis is regarded nowadays as one of the most important nosocomial pathogens. Due to its innate and acquired resistance to antibiotics, identification of new targets for antimicrobial treatment of E. faecalis is a high priority. The multiple peptides resistance factor (MprF), which was first described in Staphylococcus aureus, modifies phosphatidylglycerol with lysine and reduces the negative charge of the membrane, thus increasing resistance to cationic antimicrobial peptides (CAMPs). Two putative mprF paralogs (mprF1 and mprF2) were identified in E. faecalis by Blast search using the well-described S. aureus gene as a lead. A better understanding of these two genes and mechanisms leads to enterococcal resistance to CAMPs might help designing therapeutic strategies against this bacteria. Two single deletion mutants and double mutant in E. faecalis were created by homologues recombination. Analysis of cell membrane phospholipids from both mutants by thin-layer chromatography showed that inactivation of mprF2 abolished the synthesis of three distinct amino-phosphatidylglycerol (mostly likely Lysin-PG, Alanine-PG and Argine-PG). The CAMPs testing assay demonstrated that the deletion mutant of mprF2 was more susceptible to CAMPs than the wild type. Biofilm formation is usually regarded as a virulence factor which provides an important way for enterococci to cause infections. Inactivation of mprF2 led to increase the biofilm formation which we showed that it was due to the accumulation of eDNA in the biofilm, but the release of eDNA is independent from autolysis. The mprF2 mutant was resistance to killing by opsonophagocytosis more than wild type. However, the mprF2 gene plays no role in bacteremia in mice and rat endocarditis. Our results showed that non polar effect mprF1 mutant does not affect in the synthesis of aminoacyl-PG in the laboratory condition. It also has no effect on susceptible to CAMPs, opsonic killing and autolysis. Therefore, it seems that mprF2 is the only functional mprF gene in E. faecalis in the laboratory condition. Unlike mprF found in other bacteria, mprF does not seem to be a major virulence factor in enterococci.CAEN-BU Sciences et STAPS (141182103) / SudocSudocFranceF

    Large-Scale Screening of a Targeted Enterococcus faecalis Mutant Library Identifies Envelope Fitness Factors

    Get PDF
    Spread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% Gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs. To better understand the molecular properties of enterococci that may be required for virulence, and that may explain the emergence of these bacteria in nosocomial infections, we performed the first large-scale functional analysis of E. faecalis V583, the first vancomycin-resistant isolate from a human bloodstream infection. E. faecalis V583 is within the high-risk clonal complex 2 group, which comprises mostly isolates derived from hospital infections worldwide. We conducted broad-range screenings of candidate genes likely involved in host adaptation (e.g., colonization and/or virulence). For this purpose, a library was constructed of targeted insertion mutations in 177 genes encoding putative surface or stress-response factors. Individual mutants were subsequently tested for their i) resistance to oxidative stress, ii) antibiotic resistance, iii) resistance to opsonophagocytosis, iv) adherence to the human colon carcinoma Caco-2 epithelial cells and v) virulence in a surrogate insect model. Our results identified a number of factors that are involved in the interaction between enterococci and their host environments. Their predicted functions highlight the importance of cell envelope glycopolymers in E. faecalis host adaptation. This study provides a valuable genetic database for understanding the steps leading E. faecalis to opportunistic virulence

    Impact of environmental and genetic factors on the scale shape of zebrafish, Danio rerio (Hamilton 1822): A geometric morphometric study

    Get PDF
    Intraspecific morphological variability may reflect either genetic divergence among groups of individuals or response of individuals to environmental circumstances within the frame of phenotypic plasticity. Several studies were able to discriminate wild fish populations based on their scale shape. Here we examine whether the variations in the scale shape in fish populations could be related to genetic or environmental factors, or to both of them. In the first experiment, two inbred lines of zebrafish Danio rerio (Hamilton 1822) reared under identical environmental conditions were compared. Secondly, to find out what effect environmental factors might have, offsprings were divided into two groups and reared on different diets for 12 weeks. Potential recovery of scales from an environmental effect was also assessed. Experimental groups could successfully be distinguished according to the shape of scales in both experiments, and the results showed that both genetic and environmental factors may notably influence scale shape. It was concluded that scale shape analysis might be used as an explanatory tool to detect potential variability of environmental influences impacting genetically homogeneous groups of fish. However, due to its sensitivity to environmental heterogeneity, the applicability of this technique in identifying intraspecific stock membership of fish could be limited

    Naturally occurring hybrids of coral reef butterflyfishes have similar fitness compared to parental species.

    Get PDF
    Hybridisation can produce evolutionary novelty by increasing fitness and adaptive capacity. Heterosis, or hybrid vigour, has been documented in many plant and animal taxa, and is a notable consequence of hybridisation that has been exploited for decades in agriculture and aquaculture. On the contrary, loss of fitness in naturally occurring hybrid taxa has been observed in many cases. This can have negative consequences for the parental species involved (wasted reproductive effort), and has raised concerns for species conservation. This study evaluates the relative fitness of previously documented butterflyfish hybrids of the genus Chaetodon from the Indo-Pacific suture zone at Christmas Island. Histological examination confirmed the reproductive viability of Chaetodon hybrids. Examination of liver lipid content showed that hybrid body condition was not significantly different from parent species body condition. Lastly, size at age data revealed no difference in growth rates and asymptotic length between hybrids and parent species. Based on the traits measured in this study, naturally occurring hybrids of Chaetodon butterflyfishes have similar fitness to their parental species, and are unlikely to supplant parental species under current environmental conditions at the suture zone. However, given sufficient fitness and ongoing genetic exchange between the respective parental species, hybrids are likely to persist within the suture zone

    Comparative Genomic Analysis of Pathogenic and Probiotic Enterococcus faecalis Isolates, and Their Transcriptional Responses to Growth in Human Urine

    Get PDF
    Urinary tract infection (UTI) is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits
    corecore