11 research outputs found

    The effect of exposure to synthetic pheromone lures on male Zygaena filipendulae mating behaviour: implications for monitoring species of conservation interest

    Get PDF
    Pheromone based monitoring of insects of conservation value has the potential to revolutionise the way in which surveys are carried out. However, due to their effective use in pest management, concerns have been raised about potential negative effects of pheromone exposure on populations of rare insects. The effect of exposure to synthetic pheromone lures on male mating behaviour was examined in laboratory and field conditions using the six spot burnet moth Zygaena filipendulae (Linnaeus, 1758). For the laboratory experiment larvae were collected and cultured separately under controlled conditions. Virgin males were exposed to a synthetic pheromone lure for 24 h; then tested for responsiveness immediately after this exposure, 1 and 24 h later. Control males were tested three times: initially, 1 h later and 24 h later. The time taken for males to detect females, shown by exposure of their anal claspers, and the time taken for males to locate females were recorded. No significant difference was found between the time taken for control and exposed males to detect or locate females, and no significant difference between the proportions of males that successfully located females in exposed and control groups was found. In the field experiment the time males spent in the presence of contained females, both with and without a pheromone lure present, was recorded. Males spent more time in the presence of the females when the pheromone lure was present. Both experiments indicate male Z. filipendulae mating behaviour is not adversely affected by exposure to synthetic pheromone lures

    Does Sex-Selective Predation Stabilize or Destabilize Predator-Prey Dynamics?

    Get PDF
    Background: Little is known about the impact of prey sexual dimorphism on predator-prey dynamics and the impact of sexselective harvesting and trophy hunting on long-term stability of exploited populations. Methodology and Principal Findings: We review the quantitative evidence for sex-selective predation and study its longterm consequences using several simple predator-prey models. These models can be also interpreted in terms of feedback between harvesting effort and population size of the harvested species under open-access exploitation. Among the 81 predator-prey pairs found in the literature, male bias in predation is 2.3 times as common as female bias. We show that long-term effects of sex-selective predation depend on the interplay of predation bias and prey mating system. Predation on the ‘less limiting’ prey sex can yield a stable predator-prey equilibrium, while predation on the other sex usually destabilizes the dynamics and promotes population collapses. For prey mating systems that we consider, males are less limiting except for polyandry and polyandrogyny, and male-biased predation alone on such prey can stabilize otherwise unstable dynamics. On the contrary, our results suggest that female-biased predation on polygynous, polygynandrous or monogamous prey requires other stabilizing mechanisms to persist. Conclusions and Significance: Our modelling results suggest that the observed skew towards male-biased predation might reflect, in addition to sexual selection, the evolutionary history of predator-prey interactions. More focus on these phenomena can yield additional and interesting insights as to which mechanisms maintain the persistence of predator-prey pairs over ecological and evolutionary timescales. Our results can also have implications for long-term sustainability of harvesting and trophy hunting of sexually dimorphic species
    corecore