14 research outputs found

    Picobiliphytes: A marine picoplanktonic algal group with unknown affinities to other eukaryotes

    Get PDF
    Environmental sequencing has revealed unimagined diversity among eukaryotic picoplankton. Here, a distinct picoplanktonic algal group (table S1), initially detected from 18S rDNA sequences, was hybridized with rRNA probes, detected by Tyramide Signal Amplification - Fluorescent In Situ Hybridization (TSA-FISH) and showed an organelle-like body with orange fluorescence indicative of phycobilins. Using this fluorescence signal, cells were sorted by flow cytometry and probed. Hybridized cells contained a DAPI staining organelle resembling a plastid with a nucleomorph. This suggests that they may be secondary endosymbiotic algae. Pending isolation of living cells and their formal description these algae have been termed picobiliphytes

    Intercalibration of classical and molecular techniques for identification of Alexandrium fundyense (Dinophyceae) and estimation of cell densities

    Get PDF
    A workshop with the aim to compare classical and molecular techniques for phytoplankton enumeration took place at Kristineberg Marine Research Station, Sweden, in August 2005. Seventeen different techniques - nine classical microscopic-based and eight molecular methods - were compared. Alexandrium fundyense was the target organism in four experiments. Experiment 1 was designed to determine the range of cell densities over which the methods were applicable. Experiment 2 tested the species specificity of the methods by adding Alexandrium ostenfeldii, to samples containing A. fundyense. Experiments 3 and 4 tested the ability of the methods to detect the target organism within a natural phytoplankton community. Most of the methods could detect cells at the lowest concentration tested, 100 cells L-1, but the variance was high for methods using small volumes, such as counting chambers and slides. In general, the precision and reproducibility of the investigated methods increased with increased target cell concentration. Particularly molecular methods were exceptions in that their relative standard deviation did not vary with target cell concentration. Only two of the microscopic methods and three of the molecular methods had a significant linear relationship between their cell count estimates and the A. fundyense concentration in experiment 2, where the objective was to discriminate that species from a morphologically similar and genetically closely related species. None of the investigated methods were affected by the addition of a natural plankton community background matrix in experiment 3. The results of this study are discussed in the context of previous intercomparisons and the difficulties in defining the absolute, true target cell concentration

    The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective

    Get PDF
    A major aim of this review is to determine which physiological functions are adopted by adults and larvae to survive the winter season with low food supply and their relative importance. A second aim is to clarify the extent to which seasonal variation in larval and adult krill physiology is mediated by environmental factors with a strong seasonality, such as food supply or day light. Experimental studies on adult krill have demonstrated that speciWc physiological adaptations during autumn and winter, such as reduced metabolic rates and feeding activity, are not caused simply by the scarcity of food, as was previously assumed. These adaptations appear to be inXuenced by the local light regime. The physiological functions that larval krill adopt during winter (reduced metabolism, delayed development, lipid utilisation, and variable growth rates) are, in contrast to the adults, under direct control by the available food supply. During winter, the adults often seem to have little association with sea ice (at least until early spring). The larvae, however, feed within sea ice but mainly on the grazers of the ice algal community rather than on the algae themselves. In this respect, a miss-match in timing of the occurrence of the last phytoplankton blooms in autumn and the start of the sea ice formation, as has been increasingly observed in the west Antarctic Peninsula (WAP) region, will impact larval krill development during winter in terms of food supply and consequently the krill stock in this region
    corecore