29 research outputs found

    Labeling of Multiple HIV-1 Proteins with the Biarsenical-Tetracysteine System

    Get PDF
    Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection

    A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions

    Get PDF
    Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches

    Functional expression of the cystic fibrosis transmembrane conductance regulator in yeast

    Get PDF
    AbstractRecombinant human cystic fibrosis transmembrane conductance regulator (CFTR) has been produced in a Saccharomyces cerevisiae expression system used previously to produce transport ATPases with high yields. The arrangement of the bases in the region immediately upstream from the ATG start codon of the CFTR is extremely important for high expression levels. The maximal CFTR expression level is about 5–10% of that in Sf9 insect cells as judged by comparison of immunoblots. Upon sucrose gradient centrifugation, the majority of the CFTR is found in a light vesicle fraction separated from the yeast plasma membrane in a heavier fraction. It thus appears that most of expressed CFTR is not directed to the plasma membrane in this system. CFTR expressed in yeast has the same mobility (ca. 140 kDa) as recombinant CFTR produced in Sf9 cells in a high resolution SDS-PAGE gel before and after N-glycosidase F treatment, suggesting that it is not glycosylated. The channel function of the expressed CFTR was measured by an isotope flux assay in isolated yeast membrane vesicles and single channel recording following reconstitution into planar lipid bilayers. In the isotope flux assay, protein kinase A (PKA) increased the rate of 125I− uptake by about 30% in membrane vesicles containing the CFTR, but not in control membranes. The single channel recordings showed that a PKA-activated small conductance anion channel (8 pS) with a linear I–V relationship was present in the CFTR membranes, but not in control membranes. These results show that the human CFTR has been expressed in functional form in yeast. With the reasonably high yield and the ability to grow massive quantities of yeast at low cost, this CFTR expression system may provide a valuable new source of starting material for purification of large quantities of the CFTR for biochemical studies

    Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer

    No full text
    Chromophore-assisted light inactivation is a promising technique to inactivate selected proteins with high spatial and temporal resolution in living cells, but its use has been limited because of the lack of a methodology to prevent nonspecific photodamage in the cell owing to reactive oxygen species generated by the photosensitizer. Here we present a design strategy for photosensitizers with an environment-sensitive off/on switch for singlet oxygen (1O2) generation, which is switched on by binding to the target, to improve the specificity of protein photoinactivation. 1O2 generation in the unbound state is quenched by photoinduced electron transfer, whereas 1O2 generation can occur in the hydrophobic environment provided by the target protein, after specific binding. Inositol 1,4,5-trisphosphate receptor, which has been suggested to have a hydrophobic pocket around the ligand binding site, was specifically inactivated by an environment-sensitive photosensitizer-conjugated inositol 1,4,5-trisphosphate receptor ligand without 1O2 generation in the cytosol of the target cells, despite light illumination, demonstrating the potential of environment-sensitive photosensitizers to allow high-resolution control of generation of reactive oxygen species in the cell
    corecore