12 research outputs found
Chemotherapy-induced dynamic gene expression changes in vivo are prognostic in ovarian cancer
This work was supported by Medical Research Scotland (FRG353 to VAS), the FP7-Directorate-General for Research and Innovation of the European Commission (EU HEALTH-F4-2012-305033 to Coordinating Action Systems Medicine to DJH); the Chief Scientist Office of Scotland (to DJH) and the Scottish Funding Council (to DJH and SPL).Background: The response of ovarian cancer patients to carboplatin and paclitaxel is variable, necessitating identification of biomarkers that can reliably predict drug sensitivity and resistance. In this study, we sought to identify dynamically controlled genes and pathways associated with drug response and its time dependence. Methods: Gene expression was assessed for 14 days post-treatment with carboplatin or carboplatin–paclitaxel in xenografts from two ovarian cancer models: platinum-sensitive serous adenocarcinoma-derived OV1002 and a mixed clear cell/endometrioid carcinoma-derived HOX424 with reduced sensitivity to platinum. Results: Tumour volume reduction was observed in both xenografts, but more dominantly in OV1002. Upregulated genes in OV1002 were involved in DNA repair, cell cycle and apoptosis, whereas downregulated genes were involved in oxygen-consuming metabolic processes and apoptosis control. Carboplatin–paclitaxel triggered a more comprehensive response than carboplatin only in both xenografts. In HOX424, apoptosis and cell cycle were upregulated, whereas Wnt signalling was inhibited. Genes downregulated after day 7 from both xenografts were predictive of overall survival. Overrepresented pathways were also predictive of outcome. Conclusions: Late expressed genes are prognostic in ovarian tumours in a dynamic manner. This longitudinal gene expression study further elucidates chemotherapy response in two models, stressing the importance of delayed biomarker detection and guiding optimal timing of biopsies.Publisher PDFPeer reviewe
Germinal Centers Determine the Prognostic Relevance of Tertiary Lymphoid Structures and Are Impaired by Corticosteroids in Lung Squamous Cell Carcinoma.
In solid tumors, the presence of lymph node-like structures called tertiary lymphoid structures (TLS) is associated with improved patient survival. However, little is known about how TLS develop in cancer, how their function affects survival, and whether they are affected by cancer therapy. In this study, we used multispectral microscopy, quantitative pathology, and gene expression profiling to analyze TLS formation in human lung squamous cell carcinoma (LSCC) and in an experimental model of lung TLS induction. We identified a niche of CXCL13 <sup>+</sup> perivascular and CXCL12 <sup>+</sup> LTB <sup>+</sup> and PD-L1 <sup>+</sup> epithelial cells supporting TLS formation. We also characterized sequential stages of TLS maturation in LSCC culminating in the formation of germinal centers (GC). In untreated patients, TLS density was the strongest independent prognostic marker. Furthermore, TLS density correlated with GC formation and expression of adaptive immune response-related genes. In patients treated with neoadjuvant chemotherapy, TLS density was similar, but GC formation was impaired and the prognostic value of TLS density was lost. Corticosteroids are coadministered with chemotherapy to manage side effects in LSCC patients, so we evaluated whether they impaired TLS development independently of chemotherapy. TLS density and GC formation were each reduced in chemotherapy-naïve LSCC patients treated with corticosteroids before surgery, compared with untreated patients, a finding that we confirmed in the experimental model of lung TLS induction. Overall, our results highlight the importance of GC formation in TLS during tumor development and treatment.Significance: Corticosteroid treatment during chemotherapy negatively affects the development of tertiary lymphoid structures and abrogates their prognostic value in patients with lung cancer. Cancer Res; 78(5); 1308-20. ©2018 AACR
B cells are associated with survival and immunotherapy response in sarcoma
International audienceSoft-tissue sarcomas represent a heterogeneous group of cancer, with more than 50 histological subtypes1,2. The clinical presentation of patients with different subtypes is often atypical, and responses to therapies such as immune checkpoint blockade vary widely3,4. To explain this clinical variability, here we study gene expression profiles in 608 tumours across subtypes of soft-tissue sarcoma. We establish an immune-based classification on the basis of the composition of the tumour microenvironment and identify five distinct phenotypes: immune-low (A and B), immune-high (D and E), and highly vascularized (C) groups. In situ analysis of an independent validation cohort shows that class E was characterized by the presence of tertiary lymphoid structures that contain T cells and follicular dendritic cells and are particularly rich in B cells. B cells are the strongest prognostic factor even in the context of high or low CD8+ T cells and cytotoxic contents. The class-E group demonstrated improved survival and a high response rate to PD1 blockade with pembrolizumab in a phase 2 clinical trial. Together, this work confirms the immune subtypes in patients with soft-tissue sarcoma, and unravels the potential of B-cell-rich tertiary lymphoid structures to guide clinical decision-making and treatments, which could have broader applications in other diseases
B cells and tertiary lymphoid structures promote immunotherapy response
International audienceTreatment with immune checkpoint blockade (ICB) has revolutionized cancer therapy. Until now, predictive biomarkers1-10 and strategies to augment clinical response have largely focused on the T cell compartment. However, other immune subsets may also contribute to anti-tumour immunity11-15, although these have been less well-studied in ICB treatment16. A previously conducted neoadjuvant ICB trial in patients with melanoma showed via targeted expression profiling17 that B cell signatures were enriched in the tumours of patients who respond to treatment versus non-responding patients. To build on this, here we performed bulk RNA sequencing and found that B cell markers were the most differentially expressed genes in the tumours of responders versus non-responders. Our findings were corroborated using a computational method (MCP-counter18) to estimate the immune and stromal composition in this and two other ICB-treated cohorts (patients with melanoma and renal cell carcinoma). Histological evaluation highlighted the localization of B cells within tertiary lymphoid structures. We assessed the potential functional contributions of B cells via bulk and single-cell RNA sequencing, which demonstrate clonal expansion and unique functional states of B cells in responders. Mass cytometry showed that switched memory B cells were enriched in the tumours of responders. Together, these data provide insights into the potential role of B cells and tertiary lymphoid structures in the response to ICB treatment, with implications for the development of biomarkers and therapeutic targets