251 research outputs found

    Heartwood Extractives of Robinia Pseudoacacia Wood

    Full text link
    In this study, extracts from the heartwood of black locust (Robinia pseudoacacia L.) were obtained with ethanol solvent before and after extraction with n-hexane. Chemical composition were analyzed and compared by GC-MS. The results showed that the major components in the heartwood ethanol extract before extraction with n-hexane solvent to be the (23S)-ethylcholest-5-en-3.beta.-ol (18.33%), while the major heartwood ethanol extracts constituents after extraction with n-hexane solvent was resorcinol (51.96%). The same components of the heartwood ethanol extracts before and after extraction with n-hexane solvent also contained amounts of the Hexadecanoic acid and 9,12-Octadecadienoic acid (Z,Z)-. The other main components of the ethanol extract mainly contained about 13.75% stigmasterol, 9.35% 9,19- Cyclolanostan-3-ol, 24-methylene-, (3.beta.)-, 7.11% Lup-20(29)-en-3- one, 6.27% 9,12,15-Octadecatrien-1- ol, (Z,Z,Z)-, 6.06% Hexadecanoic acid 4.54% Ergost-5-en-3-ol, (3.beta.)-, and 3.53% campesterol

    Evolution of histone 2A for chromatin compaction in eukaryotes.

    Get PDF
    During eukaryotic evolution, genome size has increased disproportionately to nuclear volume, necessitating greater degrees of chromatin compaction in higher eukaryotes, which have evolved several mechanisms for genome compaction. However, it is unknown whether histones themselves have evolved to regulate chromatin compaction. Analysis of histone sequences from 160 eukaryotes revealed that the H2A N-terminus has systematically acquired arginines as genomes expanded. Insertion of arginines into their evolutionarily conserved position in H2A of a small-genome organism increased linear compaction by as much as 40%, while their absence markedly diminished compaction in cells with large genomes. This effect was recapitulated in vitro with nucleosomal arrays using unmodified histones, indicating that the H2A N-terminus directly modulates the chromatin fiber likely through intra- and inter-nucleosomal arginine-DNA contacts to enable tighter nucleosomal packing. Our findings reveal a novel evolutionary mechanism for regulation of chromatin compaction and may explain the frequent mutations of the H2A N-terminus in cancer

    Modeling the regulatory network of histone acetylation in Saccharomyces cerevisiae

    Get PDF
    Acetylation of histones plays an important role in regulating transcription. Histone acetylation is mediated partly by the recruitment of specific histone acetyltransferases (HATs) and deacetylases (HDACs) to genomic loci by transcription factors, resulting in modulation of gene expression. Although several specific interactions between transcription factors and HATs and HDACs have been elaborated in Saccharomyces cerevisiae, the full regulatory network remains uncharacterized. We have utilized a linear regression of optimized sigmoidal functions to correlate transcription factor binding patterns to the acetylation profiles of 11 lysines in the four core histones measured at all S. cerevisiae promoters. The resulting associations are combined with large-scale proteinā€“protein interaction data sets to generate a comprehensive model that relates recruitment of specific HDACs and HATs to transcription factors and their target genes and the resulting effects on individual lysines. This model provides a broad and detailed view of the regulatory network, describing which transcription factors are most significant in regulating acetylation of specific lysines at defined promoters. We validate the model, both computationally and experimentally, to demonstrate that it yields accurate predictions of these regulatory mechanisms

    A Remedial Action Scheme to Prevent Mid/Long-Term Voltage Instabilities

    Get PDF

    (Non)-Renormalization of the Chiral Vortical Effect Coefficient

    Get PDF
    We show using diagramtic arguments that in some (but not all) cases, the temperature dependent part of the chiral vortical effect coefficient is independent of the coupling constant. An interpretation of this result in terms of quantization in the effective 3 dimensional Chern-Simons theory is also given. In the language of 3D dimensionally reduced theory, the value of the chiral vortical coefficient is related to the formula āˆ‘n=1āˆžn=āˆ’1/12\sum_{n=1}^\infty n=-1/12. We also show that in the presence of dynamical gauge fields, the CVE coefficient is not protected from renormalization, even in the large NN limit.Comment: 11 pages, 3 figures. Version 2 corrects an error and calculates leading radiative correctio

    Molecular contrast in optical coherence tomography using a pump-probe technique and a optical switch suppression technique

    Get PDF
    We describe two novel techniques for contrast enhancement in optical coherence tomography (OCT) which enables molecular specific imaging. The first, a pump-probe technique, is employed in which a pulsed pump laser is tuned to ground-state absorption in a molecule of interest. The location of the target molecule population is derived from the resulting transient absorption of OCT sample arm light acting as probe light. Preliminary results exhibiting contrast enhancement in cross-sectional OCT images using methylene blue dye are presented. The second method is an optical switch suppression technique based on the use of a transmembrane protein called bacteriorhodopsin. Initial experiments indicate that biochemical optical switches, such as bacteriorhodopsin, are excellent contrast agent candidates for molecular contrast OCT

    Molecular contrast in optical coherence tomography using a pump-probe technique and a optical switch suppression technique

    Get PDF
    We describe two novel techniques for contrast enhancement in optical coherence tomography (OCT) which enables molecular specific imaging. The first, a pump-probe technique, is employed in which a pulsed pump laser is tuned to ground-state absorption in a molecule of interest. The location of the target molecule population is derived from the resulting transient absorption of OCT sample arm light acting as probe light. Preliminary results exhibiting contrast enhancement in cross-sectional OCT images using methylene blue dye are presented. The second method is an optical switch suppression technique based on the use of a transmembrane protein called bacteriorhodopsin. Initial experiments indicate that biochemical optical switches, such as bacteriorhodopsin, are excellent contrast agent candidates for molecular contrast OCT

    A new homatropine potentiometric membrane sensor as a useful device for homatropine hydrobromide analysis in pharmaceutical formulation and urine: a computational study

    Full text link
    Homatropine (Equipin, Isopto Homatropine) is an anticholinergic medication that inhibits muscarinic acetylcholine receptors and thus the parasympathetic nervous system. It is available as the hydrobromide or methylbromide salt. In this study, a potentiometric liquid membrane sensor for simple and fast determination of homatropine hydrobromide in pharmaceutical formulation and urine was constructed. For the membrane preparation, homatropine-tetraphenylborate complexes were employed as electroactive materials in the membrane. The proposed sensor presents wide linear range (10-5-10-1 mol L-1), low detection limit (8×10-6 mol L-1), and fast response time (ca. 10 s). Validation of the method shows suitability of the sensors for applicability in the quality control analysis of homatropine hydrobromide in pharmaceutical formulation and urine
    • ā€¦
    corecore