203 research outputs found

    Motion- Induced Vortex Vibration of a Diagonal Member in a Steel Truss Bridge

    Get PDF
    In 2009, Ikitsuki Bridge, a truss bridge in Nagasaki Prefecture with a center span length of 400 m, was discovered to have a crack in the diagonal member of the bridge. The side ratio of the section was B/D=1.18. Since motion-induced vortex vibration has not been confirmed on rectangular cross sections with side ratios of B/D<2 according to the past wind tunnel tests, wind tunnel tests were carried out. The tests had an additional purpose of clarifying the effects of the small protruding lips of flanges in steel structures on motion-induced vortex vibration. Spring-supported tests, smoke flow visualizations were performed with or without small protruding lips of flanges changing angle of attack. It was found that motion-induced vortex vibration were confirmed with a rectangular cross section with a side ratio of B/D=1.18 by experimental results of a spring-supported tests, an unsteady aerodynamic lift measurement and a flow visualization test. The effects of the existence of small protruding lips of flanges became large when angle of attack became greater than 3-4 degrees.12th Pacific Structural Steel Conference (PSSC\u2719), November 9 – 11, 2019, Tokyo Institute of Technology, Tokyo, Japa

    Monthly direct and indirect greenhouse gases emissions from household consumption in the major Japanese cities

    Get PDF
    Urban household consumption contributes substantially to global greenhouse gases (GHGs) emissions. Urban household emissions encompass both direct and indirect emissions, with the former associated with the direct use of fossil fuels and the latter with the emissions embodied in the consumed goods and services. However, there is a lack of consistent and comprehensive datasets outlining in great detail emissions from urban household consumption. To bridge this data gap, we construct an emission inventory of urban household emissions for 52 major cities in Japan that covers around 500 emission categories. The dataset spans from January 2011 to December 2015 and contains 12,384 data records for direct emissions and 1,543,128 records for indirect emissions. Direct emission intensity is provided in g-CO2/JPY to facilitate both future studies of household emission in Japan, as well as act as a reference for the development of detailed household emission inventories in other countries

    Effective Theoretical Approach to Back Reaction of the Dynamical Casimir Effect in 1+1 Dimensions

    Get PDF
    We present an approach to studying the Casimir effects by means of the effective theory. An essential point of our approach is replacing the mirror separation into the size of space S^1 in the adiabatic approximation. It is natural to identify the size of space S^1 with the scale factor of the Robertson-Walker-type metric. This replacement simplifies the construction of a class of effective models to study the Casimir effects. To check the validity of this replacement we construct a model for a scalar field coupling to the two-dimensional gravity and calculate the Casimir effects by the effective action for the variable scale factor. Our effective action consists of the classical kinetic term of the mirror separation and the quantum correction derived by the path-integral method. The quantum correction naturally contains both the Casimir energy term and the back-reaction term of the dynamical Casimir effect, the latter of which is expressed by the conformal anomaly. The resultant effective action describes the dynamical vacuum pressure, i.e., the dynamical Casimir force. We confirm that the force depends on the relative velocity of the mirrors, and that it is always attractive and stronger than the static Casimir force within the adiabatic approximation.Comment: Published Version, 16 pages, LaTeX2e with graphics package, 1 figur

    Disentangling astroglial physiology with a realistic cell model in silico

    Get PDF
    Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. Our simulations suggest that currents generated by glutamate transporters or K+ channels have negligible distant effects on membrane voltage and that individual astrocytes can successfully handle extracellular K+ hotspots. We show how intracellular Ca2+ buffers affect Ca2+ waves and why the classical Ca2+ sparks-and-puffs mechanism is theoretically compatible with common readouts of astroglial Ca2+ imaging

    Plasma pharmacokinetics after combined therapy of gemcitabine and oral S-1 for unresectable pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combination of gemcitabine (GEM) and S-1, an oral 5-fluorouracil (5-FU) derivative, has been shown to be a promising regimen for patients with unresectable pancreatic cancer.</p> <p>Methods</p> <p>Six patients with advanced pancreatic cancer were enrolled in this pharmacokinetics (PK) study. These patients were treated by oral administration of S-1 30 mg/m<sup>2 </sup>twice daily for 28 consecutive days, followed by a 14-day rest period and intravenous administration of GEM 800 mg/m<sup>2 </sup>on days 1, 15 and 29 of each course. The PK parameters of GEM and/or 5-FU after GEM single-administration, S-1 single-administration, and co-administration of GEM with pre-administration of S-1 at 2-h intervals were analyzed.</p> <p>Results</p> <p>The maximum concentration (Cmax), the area under the curve from the drug administration to the infinite time (AUCinf), and the elimination half-life (T1/2) of GEM were not significantly different between GEM administration with and without S-1. The Cmax, AUCinf, T1/2, and the time required to reach Cmax (Tmax) were not significantly different between S-1 administration with and without GEM.</p> <p>Conclusion</p> <p>There were no interactions between GEM and S-1 regarding plasma PK of GEM and 5-FU.</p

    Few-layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential

    Full text link
    Topological insulator (TI) represents an unconventional quantum phase of matter with insulating bulk bandgap and metallic surface states. Recent theoretical calculations and photoemission spectroscopy measurements show that Group V-VI materials Bi2Se3, Bi2Te3 and Sb2Te3 are TI with a single Dirac cone on the surface. These materials have anisotropic, layered structures, in which five atomic layers are covalently bonded to form a quintuple layer, and quintuple layers interact weakly through van der Waals interaction to form the crystal. A few quintuple layers of these materials are predicted to exhibit interesting surface properties. Different from our previous nanoribbon study, here we report the synthesis and characterizations of ultrathin Bi2Te3 and Bi2Se3 nanoplates with thickness down to 3 nm (3 quintuple layers), via catalyst-free vapor-solid (VS) growth mechanism. Optical images reveal thickness-dependant color and contrast for nanoplates grown on oxidized silicon (300nm SiO2/Si). As a new member of TI nanomaterials, ultrathin TI nanoplates have an extremely large surface-to-volume ratio and can be electrically gated more effectively than the bulk form, potentially enhancing surface states effects in transport measurements. Low temperature transport measurements of a single nanoplate device, with a high-k dielectric top gate, show decrease in carrier concentration by several times and large tuning of chemical potential.Comment: 6 figure

    P2X7 receptors induce degranulation in human mast cells.

    Get PDF
    Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated
    corecore