208 research outputs found

    Experimental status of deeply bound kaonic states in nuclei

    Full text link
    We review recent claims of the existence of deeply bound kaonic states in nuclei. Also we study in details the (K-,p) reaction on C12 with 1 GeV/c momentum kaon beam, based on which a deep kaon nucleus optical potential was claimed in [1]. In our Monte Carlo simulation of this reaction we include not only the quasi-elastic K- p scattering, as in [1], but also K- absorption by one and two nucleons followed by the decay of the hyperon in pi N, which can also produce strength in the region of interest. The final state interactions in terms of multiple scattering of the K-, p and all other primary particles on their way out of the nucleus is also considered. We will show that all these additional mechanisms allow us to explain the observed spectrum with a "standard" shallow kaon nucleus optical potential obtained in chiral models. [1] T. Kishimoto et al., Prog. Theor. Phys. 118, 181 (2007).Comment: 5 pages, 3 figures. To be published in the Proceedings of the International Workshop on Chiral Symmetry in Hadrons and Nuclei (Chiral10), Valencia, Spain, June 21-24, 201

    Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data.

    Get PDF
    We present two related probabilistic methods for neural source reconstruction from MEG/EEG data that reduce effects of interference, noise, and correlated sources. Both methods localize source activity using a linear mixture of temporal basis functions (TBFs) learned from the data. In contrast to existing methods that use predetermined TBFs, we compute TBFs from data using a graphical factor analysis based model [Nagarajan, S.S., Attias, H.T., Hild, K.E., Sekihara, K., 2007a. A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data. Stat Med 26, 3886–3910], which separates evoked or event-related source activity from ongoing spontaneous background brain activity. Both algorithms compute an optimal weighting of these TBFs at each voxel to provide a spatiotemporal map of activity across the brain and a source image map from the likelihood of a dipole source at each voxel. We explicitly model, with two different robust parameterizations, the contribution from signals outside a voxel of interest. The two models differ in a trade-off of computational speed versus accuracy of learning the unknown interference contributions. Performance in simulations and real data, both with large noise and interference and/or correlated sources, demonstrates significant improvement over existing source localization methods

    Possibility of s-wave pion condensates in neutron stars revisited

    Full text link
    We examine possibilities of pion condensation with zero momentum (s-wave condensation) in neutron stars by using the pion-nucleus optical potential U and the relativistic mean field (RMF) models. We use low-density phenomenological optical potentials parameterized to fit deeply bound pionic atoms or pion-nucleus elastic scatterings. Proton fraction (Y_p) and electron chemical potential (mu_e) in neutron star matter are evaluated in RMF models. We find that the s-wave pion condensation hardly takes place in neutron stars and especially has no chance if hyperons appear in neutron star matter and/or b_1 parameter in U has density dependence.Comment: 4 pages, 3 figures, REVTe

    MEG/EEG source reconstruction, statistical evaluation, and visualization with NUTMEG.

    Get PDF
    NUTMEG is a source analysis toolbox geared towards cognitive neuroscience researchers using MEG and EEG, including intracranial recordings. Evoked and unaveraged data can be imported to the toolbox for source analysis in either the time or time-frequency domains. NUTMEG offers several variants of adaptive beamformers, probabilistic reconstruction algorithms, as well as minimum-norm techniques to generate functional maps of spatiotemporal neural source activity. Lead fields can be calculated from single and overlapping sphere head models or imported from other software. Group averages and statistics can be calculated as well. In addition to data analysis tools, NUTMEG provides a unique and intuitive graphical interface for visualization of results. Source analyses can be superimposed onto a structural MRI or headshape to provide a convenient visual correspondence to anatomy. These results can also be navigated interactively, with the spatial maps and source time series or spectrogram linked accordingly. Animations can be generated to view the evolution of neural activity over time. NUTMEG can also display brain renderings and perform spatial normalization of functional maps using SPM's engine. As a MATLAB package, the end user may easily link with other toolboxes or add customized functions

    Recent topics of mesic atoms and mesic nuclei -- ϕ\phi mesic nuclei exist ?--

    Full text link
    We study ϕ\phi-meson production in nuclei to investigate the in-medium modification of the ϕ\phi-meson spectral function at finite density. We consider (pˉ,ϕ{\bar p},\phi), (γ,p\gamma,p) and (π,n\pi^-,n) reactions to produce a ϕ\phi-meson inside the nucleus and evaluate the effects of the medium modifications to reaction cross sections. The structures of the bound states, ϕ\phi-mesic nuclei, are also studied. For strong absorptive interaction cases, we need to know the spectrum shape in a wide energy region to deduce the properties of ϕ\phi.Comment: Talk given at EXA08, Vienna, September 2008. To be published in the Proceedings, Hyperfine Interactions. 6 pages, 6 figure

    Selected topics on Hadrons in Nuclei

    Get PDF
    In this talk we report on selected topics on hadrons in nuclei. The first topic is the renormalization of the width of the Λ(1520)\Lambda(1520) in a nuclear medium. This is followed by a short update of the situation of the ω\omega in the medium. The investigation of the properties of Kˉ\bar{K} in the nuclear medium from the study of the (Kflight,p)(K_{flight},p) reaction is also addressed, as well as properties of X,Y,Z charmed and hidden charm resonances in a nuclear medium. Finally we address the novel issue of multimeson states.Comment: Talk at the International Nuclear Physics Conference, Vancouver, July 201

    Magnetic moments of the low-lying JP=1/2J^P=\,1/2^-, 3/23/2^- Λ\Lambda resonances within the framework of the chiral quark model

    Full text link
    The magnetic moments of the low-lying spin-parity JP=J^P= 1/21/2^-, 3/23/2^- Λ\Lambda resonances, like, for example, Λ(1405)\Lambda(1405) 1/21/2^-, Λ(1520)\Lambda(1520) 3/23/2^-, as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization
    corecore