51 research outputs found
The association between farming activities, precipitation, and the risk of acute gastrointestinal illness in rural municipalities of Quebec, Canada: a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Increasing livestock density and animal manure spreading, along with climate factors such as heavy rainfall, may increase the risk of acute gastrointestinal illness (AGI). In this study we evaluated the association between farming activities, precipitation and AGI.</p> <p>Methods</p> <p>A cross-sectional telephone survey of randomly selected residents (n = 7006) of 54 rural municipalities in Quebec, Canada, was conducted between April 2007 and April 2008. AGI symptoms and several risk factors were investigated using a phone questionnaire. We calculated the monthly prevalence of AGI, and used multivariate logistic regression, adjusting for several demographic and risk factors, to evaluate the associations between AGI and both intensive farming activities and cumulative weekly precipitation. Cumulative precipitation over each week, from the first to sixth week prior to the onset of AGI, was analyzed to account for both the delayed effect of precipitation on AGI, and the incubation period of causal pathogens. Cumulative precipitation was treated as a four-category variable: high (≥90<sup>th </sup>percentile), moderate (50<sup>th </sup>to <90<sup>th </sup>percentile), low (10<sup>th </sup>to <50<sup>th </sup>percentile), and very low (<10<sup>th </sup>percentile) precipitation.</p> <p>Results</p> <p>The overall monthly prevalence of AGI was 5.6% (95% CI 5.0%-6.1%), peaking in winter and spring, and in children 0-4 years old. Living in a territory with intensive farming was negatively associated with AGI: adjusted odds ratio (OR) = 0.70 (95% CI 0.51-0.96). Compared to low precipitation periods, high precipitation periods in the fall (September, October, November) increased the risk of AGI three weeks later (OR = 2.20; 95% CI 1.09-4.44) while very low precipitation periods in the summer (June, July, August) increased the risk of AGI four weeks later (OR = 2.19; 95% CI 1.02-4.71). Further analysis supports the role of water source on the risk of AGI.</p> <p>Conclusions</p> <p>AGI poses a significant burden in Quebec rural municipalities with a peak in winter. Intensive farming activities were found to be negatively associated with AGI. However, high and very low precipitation levels were positively associated with the occurrence of AGI, especially during summer and fall. Thus, preventive public health actions during such climate events may be warranted.</p
Burden of rotavirus gastroenteritis in the Middle Eastern and North African pediatric population
<p>Abstract</p> <p>Background</p> <p>Rotavirus gastroenteritis (RVGE) is the most common cause of severe childhood diarrhea worldwide. Objectives were to estimate the burden of RVGE among children less than five years old in the Middle East (Bahrain, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, UAE, Yemen), North Africa (Algeria, Egypt, Libya, Morocco, Tunisia) and Turkey.</p> <p>Methods</p> <p>A comprehensive literature search was conducted in major databases on the epidemiology and burden of rotavirus among children less than five years old between 1999 and 2009. Data from each country was extracted and compared.</p> <p>Results</p> <p>The search identified 43 studies. RVGE was identified in 16-61% of all cases of acute gastroenteritis, with a peak in the winter. RVGE-related hospitalization rates ranged from 14% to 45%, compared to 14%-28% for non-RVGE. Annually, RVGE caused up to 112 fatalities per 100,000 in certain countries in the region. Hospitalization costs ranged from 4.6 million annually, depending on the country. The most recent literature available showed that G1P[8] was the most prevalent genotype combination in 8 countries (range 23%-56%). G2P[4] was most prevalent in 4 countries (26%-48%). G9P[8] and G4P[8] were also frequently detected.</p> <p>Conclusions</p> <p>RVGE is a common disease associated with significant morbidity, mortality, and economic burden. Given the variety and diverse rotavirus types in the region, use of a vaccine with broad and consistent serotype coverage would be important to help decrease the burden of RVGE in the Middle East and North Africa.</p
High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage
Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10(−4)), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses
The Fecal Viral Flora of Wild Rodents
The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat) collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in mammals
Detection and molecular characterization of enteric viruses in environmental samples in Monastir, Tunisia between January 2003 and April 2007.
International audienceAbstract Aims: A prospective study was performed to characterize the main human enteric viruses able to persist in sewage samples and in shellfish tissues, and to establish the correlation between environmental strains and viral infantile diarrhoea observed in the same area during the same period. Methods and Results: A total of 250 sewage (raw and treated) and 60 shellfish samples were collected between January 2003 and April 2007 in Monastir region, Tunisia. Group A rotavirus (RVA) was detected in 80 (32%) sewage samples, norovirus (NoV) in 11 (4.4%) and enteric adenovirus (AdV) in 1 (0.4%). Among 60 shellfish samples collected near sewage effluents, one was contaminated by NoV (1.6%). Conclusion: Our data represent the first documentation in Tunisia, combining gastroenteritis viruses circulating in the environment and in clinical isolates. We observed a correlation between environmental strains and those found in children suffering from gastroenteritis during the same period study. This suggests the existence of a relationship between water contamination and paediatric diarrhoea. Significance and Impact of the Study: Our results address the potential health risks associated with transmission of human enteric viruses through water-related environmental routes. The research findings will aid in elucidating the molecular epidemiology and circulation of enteric viruses in Tunisia and in Africa, where data are rare
- …