16 research outputs found

    Effects of Aliskiren on Stroke in Rats Expressing Human Renin and Angiotensinogen Genes

    Get PDF
    OBJECTIVE: Pre-treatment with angiotensin receptor blockers is known to improve neurological outcome after stroke. This study investigated for the first time, whether the renin inhibitor aliskiren has similar neuroprotective effects. METHODS: Since aliskiren specifically blocks human renin, double transgenic rats expressing human renin and angiotensinogen genes were used. To achieve a systolic blood pressure of 150 or 130 mmHg animals were treated with aliskiren (7.5 or 12.5 mg/kg*d) or candesartan (1.5 or 10 mg/kg*d) via osmotic minipump starting five days before middle cerebral artery occlusion with reperfusion. Infarct size was determined by magnetic resonance imaging. mRNA of inflammatory marker genes was studied in different brain regions. RESULTS: The mortality of 33.3% (7 of 21 animals) in the vehicle group was reduced to below 10% by treatment with candesartan or aliskiren (p<0.05). Aliskiren-treated animals had a better neurological outcome 7 days post-ischemia, compared to candesartan (Garcia scale: 9.9±0.7 vs. 7.3±0.7; p<0.05). The reduction of infarct size in the aliskiren group did not reach statistical significance compared to candesartan and vehicle (24 h post-ischemia: 314±81 vs. 377±70 and 403±70 mm(3) respectively). Only aliskiren was able to significantly reduce stroke-induced gene expression of CXC chemokine ligand 1, interleukin-6 and tumor necrosis factor-alpha in the ischemic core. CONCLUSIONS: Head-to-head comparison suggests that treatment with aliskiren before and during cerebral ischemia is at least as effective as candesartan in double transgenic rats. The improved neurological outcome in the aliskiren group was blood pressure independent. Whether this effect is due to primary anti-inflammatory mechanisms has to be investigated further

    Prevention and Intervention Studies with Telmisartan, Ramipril and Their Combination in Different Rat Stroke Models

    Get PDF
    The effects of AT1 receptor blocker, telmisartan, and the ACE inhibitor, ramipril, were tested head-to head and in combination on stroke prevention in hypertensive rats and on potential neuroprotection in acute cerebral ischemia in normotensive rats. Normotensive Wistar rats were treated s.c. 5 days prior to middle cerebral artery occlusion (MCAO) for 90 min with reperfusion. Groups (n = 10 each): (1) sham, (2) vehicle (V; 0,9% NaCl), (3) T (0,5 mg/kg once daily), (4) R (0,01 mg/kg twice daily), (5) R (0,1 mg/kg twice daily) or (6) T (0,5 mg/kg once daily) plus R (0,01 mg/kg twice daily). Twenty-four and 48 h after MCAO, neurological outcome (NO) was determined. Forty-eight h after MCAO, infarct volume by MRI, neuronal survival, inflammation factors and neurotrophin receptor (TrkB) were analysed.Stroke incidence was reduced, survival was prolonged and neurological outcome was improved in all treated SHR-SP with no differences between treated groups. In the acute intervention study, T and T+R, but not R alone, improved NO, reduced infarct volume, inflammation (TNFα), and induced TrkB receptor and neuronal survival in comparison to V.T, R or T+R had similar beneficial effects on stroke incidence and NO in hypertensive rats, confirming BP reduction as determinant factor in stroke prevention. In contrast, T and T+R provided superior neuroprotection in comparison to R alone in normotensive rats with induced cerebral ischemia

    Markers of physiological stress during exercise under conditions of normoxia, normobaric hypoxia, hypobaric hypoxia and genuine high altitude.

    Get PDF
    Purpose To investigate whether there is a differential response at rest and following exercise to conditions of genuine high altitude (GHA), normobaric hypoxia (NH), hypobaric hypoxia (HH) and normobaric normoxia (NN). Method Markers of sympathoadrenal and adrenocortical function (plasma normetanephrine [PNORMET], metanephrine [PMET], cortisol), myocardial injury (highly sensitive cardiac troponin T [hscTnT]) and function (N-terminal brain natriuretic peptide [NT-proBNP]) were evaluated at rest and with exercise under NN, at 3375 m in the Alps (GHA) and at equivalent simulated altitude under NH and HH. Participants cycled for 2 hours {15 minute warm-up, 105 minutes at 55% Wmax (maximal workload)} with venous blood samples taken prior (T0), immediately following (T120) and 2 hours post-exercise (T240). Results Exercise in the three hypoxic environments produced a similar pattern of response with the only difference between environments being in relation to PNORMET. Exercise in NN only induced a rise in PNORMET and PMET. Conclusion Biochemical markers that reflect sympathoadrenal, adrenocortical and myocardial responses to physiological stress demonstrate significant differences in the response to exercise under conditions of normoxia versus hypoxia while NH and HH appear to induce broadly similar responses to GHA and may therefore be reasonable surrogates

    Renal Outcome in Equipotent Antihypertensive Treatment with Telmisartan, Ramipril and in Combination in SHR-SP Rats

    No full text
    Background: The ONTARGET trial revealed an association of ACEI/ARB combination treatment (telmisartan and ramipril) with adverse renal outcome versus respective monotherapy; preclinical evidence regarding renal outcome in ACEI/ARB combination treatment is scarce.Methods: Spontaneously hypertensive stroke prone rats (SHR-SP) rats on a salt-rich diet were randomly allocated to 4 groups: SHR (untreated, n = 24), SHR + telmisartan (SHR-T, 2.39 +/- 0.69 mg/kg bw; n = 27), SHR + ramipril (SHR-R, 6.28 +/- 3.48 mg/kg bw; n = 27) and combination treatment (SHR-TR, 0.51 +/- 0.14 mg/kg bw; same dose for telmisartan and ramipril; n = 26). Study duration was 12 weeks, blood pressure was assessed weekly and doses were adjusted to maintain equal blood pressure. Finally, blood and urine samples were obtained and kidneys were harvested for histological studies.Results: Blood pressure in untreated rats rose to a maximum of 239 mmHg, whereas in all treatment groups it remained stable betvveen 140 and 150 mmHg. Mortality was 50% in the untreated group, whereas all treatment groups survived completely. Renal function - as indicated by plasma urea and cystatin c - was significantly worse in SHR-TR animals compared to all other groups. With plasma creatinine a similar trend was observed. All treatment options significantly decreased albuminuria. Renal glomerulosclerosis was decreased by monotherapy, whereas combination therapy failed to have a significant effect. Interstitial fibrosis was decreased to a similar extent by all treatment options.Conclusions: ACEI/ARB combination treatment failed to render significant additional benefits on renal outcome in hypertensive rats when compared to monotherapy. Instead our data indicate that dual RAAS blockade might have an adverse effect on kidney function and histology when compared to monotherapy in salt-loaded SHR-SP. (Clin. Lab. 2012;58:625-633. DOI: 10.7754/Clin.Lab.2011.110622

    Changes in arterial function in a mouse model of human familial hypercholesterolaemia

    No full text
    AIM: Atherosclerosis is the most common cause of cardiovascular disease. The ApoB mouse is a model for human familial hypercholesterolaemia and has a lipoprotein profile similar to that of humans with atherosclerosis. Therefore, it is a suitable model to investigate the changes in vasoreactivity during atherogenesis. This study investigates contractile and dilatative properties of arteries in this model in relation to age. METHODS: Male ApoB mice and B6, wild-type (WT), mice were examined at age four or 18 months. Isometric measurements of 2-mm ring preparations of the aorta thoracica were performed using a wire myograph. Histological and biochemical methods served to determine atherosclerosis, lipid status and endothelial markers respectively. RESULTS: Morphometric analysis showed that all old ApoB mice had severe atherosclerosis in the aorta. Atherosclerotic alteration of the aorta of the ApoB mice coincided with a diminished vasodilatation to acetylcholine. The phenylephrine response was significantly attenuated already to the same degree in the non-atherosclerotic aorta of the young ApoB mice as in the atherosclerotic aorta of the older ApoB mice. Serum parameters showed a rise in total cholesterol and triglycerides in the ApoB strain compared to WT mice. Soluble intercellular adhesion molecule (sICAM)-1 and soluble vascular adhesion molecule (sVCAM)-1 were increased in old compared to young ApoB mice. CONCLUSION: The study shows that reduced acetylcholine-induced dilatation is related to the presence of atherosclerosis in old ApoB mice. Remarkably, the impaired vessel reactivity to phenylephrine already in young ApoB mice indicates early changes in vascular function in this model.O. Brinkmann, K. Schmerbach, U. J. F. Tietge, T. Dietrich, H. Guski, D. Linz, H. Kühn, A. Patzak, K. Wilfer

    Comparison between single and combined treatment with candesartan and pioglitazone following transient focal ischemia in rat brain

    No full text
    Angiotensin AT1 receptor blockers (ARBs) and thiazolidinediones (TZDs) have become well established drugs for the treatment of major risk factors of stroke. Since several studies provided evidence that ARBs and TZDs also have additional anti-inflammatory effects, we hypothesized that a combined treatment with the ARB, candesartan, and the TZD, pioglitazone, ameliorates ischemia-induced brain injury and inflammation by synergistic anti-inflammatory actions. Normotensive Wistar rats were pre-treated for 5 days with vehicle (0.9% NaCl), 0.2 mg/kg/day candesartan (s.c.), and/or 2 and/or 20 mg/kg/day pioglitazone (p.o.), respectively and underwent 90 min of middle cerebral artery occlusion (MCAO) with successive reperfusion. Neurological deficits and infarct size were determined 24 h and 48 h after MCAO, respectively, followed by tissue sampling. Animals treated with candesartan, pioglitazone, and the combination of candesartan and pioglitazone had reduced neurological deficits 24 h and 48 h after MCAO, respectively (P < 0.05–0.01). Infarct size was reduced by treatment of candesartan, pioglitazone, and their respective combination (each P < 0.05) 48 h after stroke compared to vehicle. Treatment with candesartan, pioglitazone, and their combination resulted in significantly reduced mRNA expression of the inflammatory markers CXCL1 and TNFα in vivo (P < 0.01). The combination of candesartan plus pioglitazone is equally effective compared to their single applications concerning neuroprotection and attenuation of inflammation after MCAO. Therefore, we conclude that a direct synergistic neuroprotective action of parallel ARB and TZD treatment is unlikely

    The beta-lactam antibiotic, ceftriaxone, dramatically improves survival, increases glutamate uptake and induces neurotrophins in stroke

    No full text
    OBJECTIVE: Ceftriaxone has been reported to reduce neuronal damage in amyotrophic lateral sclerosis and in an in-vitro model of neuronal ischaemia through increased expression and activity of the glutamate transporter, GLT1. We tested the effects of ceftriaxone on mortality, neurological outcome, and infarct size in experimental stroke in rats and looked for underlying mechanisms. METHODS: Male normotensive Wistar rats received ceftriaxone (200 mg/kg intraperitoneal) as a single injection 90 min after middle cerebral artery occlusion (90 min with reperfusion). Forty-eight hours after middle cerebral artery occlusion, infarct size (MRI) and neurological deficits were estimated. GLT1 expression was determined by real time RT-PCR, immunoblotting and promoter reporter assay, astrocyte GLT1 activity by measuring glutamate uptake. Bacterial load in various organs was measured by real time RT-PCR, neurotrophins and IL-6 by immunoblotting. RESULTS: Ceftriaxone dramatically reduced early (24-h) mortality from 34.5% (vehicle treatment, n = 29) to 0% (P < 0.01, n = 19). In a subgroup, followed up for 4 weeks, mortality persisted at 0%. Ceftriaxone strongly tended to reduce infarct size, it significantly improved neuronal survival within the penumbra, reduced neurological deficits (P < 0.001) and led to an upregulation of neurotrophins (P < 0.01) in the peri-infarct zone. Ceftriaxone did not increase GLT1 expression, but increased GLT1 activity (P < 0.05). CONCLUSION: Ceftriaxone causes a significant reduction in acute stroke mortality in a poststroke treatment regimen in animal studies. Improved neurological performance and survival may be due to neuroprotection by activation of GLT1 and a stimulation of neurotrophins resulting in an increased number of surviving neurons in the penumbra

    Angiotensin II AT1 Receptor Blockade Ameliorates Brain Inflammation

    No full text
    Brain inflammation has a critical role in the pathophysiology of brain diseases of high prevalence and economic impact, such as major depression, schizophrenia, post-traumatic stress disorder, Parkinson's and Alzheimer's disease, and traumatic brain injury. Our results demonstrate that systemic administration of the centrally acting angiotensin II AT1 receptor blocker (ARB) candesartan to normotensive rats decreases the acute brain inflammatory response to administration of the bacterial endotoxin lipopolysaccharide (LPS), a model of brain inflammation. The broad anti-inflammatory effects of candesartan were seen across the entire inflammatory cascade, including decreased production and release to the circulation of centrally acting proinflammatory cytokines, repression of nuclear transcription factors activation in the brain, reduction of gene expression of brain proinflammatory cytokines, cytokine and prostanoid receptors, adhesion molecules, proinflammatory inducible enzymes, and reduced microglia activation. These effects are widespread, occurring not only in well-known brain target areas for circulating proinflammatory factors and LPS, that is, hypothalamic paraventricular nucleus and the subfornical organ, but also in the prefrontal cortex, hippocampus, and amygdala. Candesartan reduced the associated anorexic effects, and ameliorated associated body weight loss and anxiety. Direct anti-inflammatory effects of candesartan were also documented in cultured rat microglia, cerebellar granule cells, and cerebral microvascular endothelial cells. ARBs are widely used in the treatment of hypertension and stroke, and their anti-inflammatory effects contribute to reduce renal and cardiac failure. Our results indicate that these compounds may offer a novel and safe therapeutic approach for the treatment of brain disorders
    corecore