122 research outputs found

    Two-Dimensional Electrophoresis of Tau Mutants Reveals Specific Phosphorylation Pattern Likely Linked to Early Tau Conformational Changes

    Get PDF
    The role of Tau phosphorylation in neurofibrillary degeneration linked to Alzheimer's disease remains to be established. While transgenic mice based on FTDP-17 Tau mutations recapitulate hallmarks of neurofibrillary degeneration, cell models could be helpful for exploratory studies on molecular mechanisms underlying Tau pathology. Here, “human neuronal cell lines” overexpressing Wild Type or mutated Tau were established. Two-dimensional electrophoresis highlights that mutated Tau displayed a specific phosphorylation pattern, which occurs in parallel to the formation of Tau clusters as visualized by electron microscopy. In fact, this pattern is also displayed before Tau pathology onset in a well established mouse model relevant to Tau aggregation in Alzheimer's disease. This study suggests first that pathological Tau mutations may change the distribution of phosphate groups. Secondly, it is possible that this molecular event could be one of the first Tau modifications in the neurofibrillary degenerative process, as this phenomenon appears prior to Tau pathology in an in vivo model and is linked to early steps of Tau nucleation in Tau mutants cell lines. Such cell lines consist in suitable and evolving models to investigate additional factors involved in molecular pathways leading to whole Tau aggregation

    Relationship between chronic pain and cognition in cognitively intact older persons and patients with Alzheimer's disease; the need to control for mood

    Get PDF
    Background: Brain areas that are involved in cognition and mood also play a role in pain processing. Objective: The goal of the present study was to examine the relationship between chronic pain and cognition [executive functions (EF) and memory], while controlling for mood, in cognitively intact older persons and in patients with Alzheimer's disease (AD). Methods: Two groups of subjects participated: 20 older persons without dementia and 19 patients in an early stage of probable AD who suffered from arthrosis/arthritis. Pain intensity and pain affect were assessed by the Colored Analogue Scale for Pain Intensity and for Pain Affect, the Faces Pain Scale (FPS) and the Number of Words Chosen-Affective (NWC-A). Level of depression and anxiety were evaluated by questionnaires. EF and memory were assessed by neuropsychological tests. Results: The results show that significant correlations between specific cognitive functions, pain intensity and pain affect were lacking in the cognitively intact older persons. Cognition, in particular memory, appeared to be related to depressive symptoms. In contrast, a significant positive correlation was observed between EF, pain intensity and pain affect measured by the FPS in the AD group. Conclusions: Although older persons with depression were excluded, in studies on pain and cognition one should control for the presence of depressive symptoms in older persons with and without dementia. Copyright © 2008 S. Karger AG

    Regulation of GDF-15, a distant TGF-β superfamily member, in a mouse model of cerebral ischemia

    Get PDF
    GDF-15 is a novel distant member of the TGF-β superfamily and is widely distributed in the brain and peripheral nervous system. We have previously reported that GDF-15 is a potent neurotrophic factor for lesioned dopaminergic neurons in the substantia nigra, and that GDF-15-deficient mice show progressive postnatal losses of motor and sensory neurons. We have now investigated the regulation of GDF-15 mRNA and immunoreactivity in the murine hippocampal formation and selected cortical areas following an ischemic lesion by occlusion of the middle cerebral artery (MCAO). MCAO prominently upregulates GDF-15 mRNA in the hippocampus and parietal cortex at 3 h and 24 h after lesion. GDF-15 immunoreactivity, which is hardly detectable in the unlesioned brain, is drastically upregulated in neurons identified by double-staining with NeuN. NeuN staining reveals that most, if not all, neurons in the granular layer of the dentate gyrus and pyramidal layers of the cornu ammonis become GDF-15-immunoreactive. Moderate induction of GDF-15 immunoreactivity has been observed in a small number of microglial cells identified by labeling with tomato lectin, whereas astroglial cells remain GDF-15-negative after MCAO. Comparative analysis of the size of the infarcted area after MCAO in GDF-15 wild-type and knockout mice has failed to reveal significant differences. Together, our data substantiate the notion that GDF-15 is prominently upregulated in the lesioned brain and might be involved in orchestrating post-lesional responses other than the trophic support of neurons

    Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture

    Get PDF
    Alzheimer's disease (AD) is pathologically characterised by the age-dependent deposition of β-amyloid (Aβ) in senile plaques, intraneuronal accumulation of tau as neurofibrillary tangles, synaptic dysfunction and neuronal death. Neuroinflammation, typified by the accumulation of activated microglia and reactive astrocytes, is believed to modulate the development and/or progression of AD. We have used primary rat neuronal, astrocytic and mixed cortical cultures to investigate the contribution of astrocyte-mediated inflammatory responses during Aβ-induced neuronal loss. We report that the presence of small numbers of astrocytes exacerbate Aβ-induced neuronal death, caspase-3 activation and the production of caspase-3-cleaved tau. Furthermore, we show that astrocytes are essential for the Aβ-induced tau phosphorylation observed in primary neurons. The release of soluble inflammatory factor(s) from astrocytes accompanies these events, and inhibition of astrocyte activation with the anti-inflammatory agent, minocycline, reduces astrocytic inflammatory responses and the associated neuronal loss. Aβ-induced increases in caspase-3 activation and the production of caspase-3-truncated tau species in neurons were reduced when the astrocytic response was attenuated with minocycline. Taken together, these results show that astrocytes are important mediators of the neurotoxic events downstream of elevated Aβ in models of AD, and suggest that mechanisms underlying pro-inflammatory cytokine release might be an important target for therapy

    Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving variations in the transcriptome of many genes. AD does not affect all brain regions simultaneously. Identifying the differences among the affected regions may shed more light onto the disease progression. We developed a novel method involving the differential topology of gene coexpression networks to understand the association among affected regions and disease severity.</p> <p>Methods</p> <p>We analysed microarray data of four regions - entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC) and middle temporal gyrus (MTG) from AD affected and normal subjects. A coexpression network was built for each region and the topological overlap between them was examined. Genes with zero topological overlap between two region-specific networks were used to characterise the differences between the two regions.</p> <p>Results and conclusion</p> <p>Results indicate that MTG shows early AD pathology compared to the other regions. We postulate that if the MTG gets affected later in the disease, post-mortem analyses of individuals with end-stage AD will show signs of early AD in the MTG, while the EC, HIP and PCC will have severe pathology. Such knowledge is useful for data collection in clinical studies where sample selection is a limiting factor as well as highlighting the underlying biology of disease progression.</p

    Tauopathic Changes in the Striatum of A53T α-Synuclein Mutant Mouse Model of Parkinson's Disease

    Get PDF
    Tauopathic pathways lead to degenerative changes in Alzheimer's disease and there is evidence that they are also involved in the neurodegenerative pathology of Parkinson's disease [PD]. We have examined tauopathic changes in striatum of the α-synuclein (α-Syn) A53T mutant mouse. Elevated levels of α-Syn were observed in striatum of the adult A53T α-Syn mice. This was accompanied by increases in hyperphosphorylated Tau [p-Tau], phosphorylated at Ser202, Ser262 and Ser396/404, which are the same toxic sites also seen in Alzheimer's disease. There was an increase in active p-GSK-3β, hyperphosphorylated at Tyr216, a major and primary kinase known to phosphorylate Tau at multiple sites. The sites of hyperphosphorylation of Tau in the A53T mutant mice were similar to those seen in post-mortem striata from PD patients, attesting to their pathophysiological relevance. Increases in p-Tau were not due to alterations on protein phosphatases in either A53T mice or in human PD, suggesting lack of involvement of these proteins in tauopathy. Extraction of striata with Triton X-100 showed large increases in oligomeric forms of α-Syn suggesting that α-Syn had formed aggregates the mutant mice. In addition, increased levels of p-GSK-3β and pSer396/404 were also found associated with aggregated α-Syn. Differential solubilization to measure protein binding to cytoskeletal proteins demonstrated that p-Tau in the A53T mutant mouse were unbound to cytoskeletal proteins, consistent with dissociation of p-Tau from the microtubules upon hyperphosphorylation. Interestingly, α-Syn remained tightly bound to the cytoskeleton, while p-GSK-3β was seen in the cytoskeleton-free fractions. Immunohistochemical studies showed that α-Syn, pSer396/404 Tau and p-GSK-3β co-localized with one another and was aggregated and accumulated into large inclusion bodies, leading to cell death of Substantia nigral neurons. Together, these data demonstrate an elevated state of tauopathy in striata of the A53T α-Syn mutant mice, suggesting that tauopathy is a common feature of synucleinopathies

    Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology

    Get PDF
    A recent genome-wide association meta-analysis for Alzheimer's disease (AD) identified 19 risk loci (in addition to APOE) in which the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes within these loci for their ability to modify Tau neurotoxicity by quantifying the size of >6000 eyes. Besides Drosophila Amph (ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological stages in the brains of AD patients and transgenic Tau mice. These data indicate that PTK2B acts as an early marker and in vivo modulator of Tau toxicity

    A miRNA Signature of Prion Induced Neurodegeneration

    Get PDF
    MicroRNAs (miRNAs) are small, non-coding RNA molecules which are emerging as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of neuronal development and differentiation, however, little is known about their role in neurodegeneration. We used microarrays and RT-PCR to profile miRNA expression changes in the brains of mice infected with mouse-adapted scrapie. We determined 15 miRNAs were de-regulated during the disease processes; miR-342-3p, miR-320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a were over 2.5 fold up-regulated and miR-338-3p and miR-337-3p over 2.5 fold down-regulated. Only one of these miRNAs, miR-128, has previously been shown to be de-regulated in neurodegenerative disease. De-regulation of a unique subset of miRNAs suggests a conserved, disease-specific pattern of differentially expressed miRNAs is associated with prion–induced neurodegeneration. Computational analysis predicted numerous potential gene targets of these miRNAs, including 119 genes previously determined to be also de-regulated in mouse scrapie. We used a co-ordinated approach to integrate miRNA and mRNA profiling, bioinformatic predictions and biochemical validation to determine miRNA regulated processes and genes potentially involved in disease progression. In particular, a correlation between miRNA expression and putative gene targets involved in intracellular protein-degradation pathways and signaling pathways related to cell death, synapse function and neurogenesis was identified

    Ginkgo Biloba Extract Ameliorates Oxidative Phosphorylation Performance and Rescues Aβ-Induced Failure

    Get PDF
    Energy deficiency and mitochondrial failure have been recognized as a prominent, early event in Alzheimer's disease (AD). Recently, we demonstrated that chronic exposure to amyloid-beta (Abeta) in human neuroblastoma cells over-expressing human wild-type amyloid precursor protein (APP) resulted in (i) activity changes of complexes III and IV of the oxidative phosphorylation system (OXPHOS) and in (ii) a drop of ATP levels which may finally instigate loss of synapses and neuronal cell death in AD. Therefore, the aim of the present study was to investigate whether standardized Ginkgo biloba extract LI 1370 (GBE) is able to rescue Abeta-induced defects in energy metabolism

    Neuroregeneration in neurodegenerative disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach.</p> <p>Discussion</p> <p>Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies.</p> <p>Summary</p> <p>In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.</p
    • …
    corecore