18 research outputs found

    HIV-1 Promotes Renal Tubular Epithelial Cell Protein Synthesis: Role of mTOR Pathway

    Get PDF
    Tubular cell HIV-infection has been reported to manifest in the form of cellular hypertrophy and apoptosis. In the present study, we evaluated the role of mammalian target of rapamycin (mTOR) pathway in the HIV induction of tubular cell protein synthesis. Mouse proximal tubular epithelial cells (MPTECs) were transduced with either gag/pol-deleted NL4-3 (HIV/MPTEC) or empty vector (Vector/MPTEC). HIV/MPTEC showed enhanced DNA synthesis when compared with Vector/MPTECs by BRDU labeling studies. HIV/MPTECs also showed enhanced production of ÎČ-laminin and fibronection in addition to increased protein content per cell. In in vivo studies, renal cortical sections from HIV transgenic mice and HIVAN patients showed enhanced tubular cell phosphorylation of mTOR. Analysis of mTOR revealed increased expression of phospho (p)-mTOR in HIV/MPTECs when compared to vector/MPTECs. Further downstream analysis of mTOR pathway revealed enhanced phosphorylation of p70S6 kinase and associated diminished phosphorylation of eEF2 (eukaryotic translation elongation factor 2) in HIV/MPTECs; moreover, HIV/MPTECs displayed enhanced phosphorylation of eIF4B (eukaryotic translation initiation factor 4B) and 4EBP-1 (eukaryotic 4E binding protein). To confirm our hypothesis, we evaluated the effect of rapamycin on HIV-induced tubular cell downstream signaling. Rapamycin not only attenuated phosphorylation of p70S6 kinase and associated down stream signaling in HIV/MPTECs but also inhibited HIV-1 induced tubular cell protein synthesis. These findings suggest that mTOR pathway is activated in HIV-induced enhanced tubular cell protein synthesis and contributes to tubular cell hypertrophy

    The effect of lengthening contractions on neuromuscular junction structure in adult and old mice

    Get PDF
    Skeletal muscles of old mice demonstrate a profound inability to regenerate fully following damage. Such a failure could be catastrophic to older individuals where muscle loss is already evident. Degeneration and regeneration of muscle fibres following contraction-induced injury in adult and old mice are well characterised, but little is known about the accompanying changes in motor neurons and neuromuscular junctions (NMJs) following this form of injury although defective re-innervation of muscle following contraction-induced damage has been proposed to play a role in sarcopenia. This study visualised and quantified structural changes to motor neurons and NMJs in Extensor digitorum longus (EDL) muscles of adult and old Thy1-YFP transgenic mice during regeneration following contraction-induced muscle damage. Data demonstrated that the damaging contraction protocol resulted in substantial initial disruption to NMJs in muscles of adult mice, which was reversed entirely within 28 days following damage. In contrast, in quiescent muscles of old mice, ∌15 % of muscle fibres were denervated and ∌80 % of NMJs showed disruption. This proportion of denervated and partially denervated fibres remained unchanged following recovery from contraction-induced damage in muscles of old mice although ∌25 % of muscle fibres were completely lost by 28 days post-contractions. Thus, in old mice, the failure to restore full muscle force generation that occurs following damage does not appear to be due to any further deficit in the percentage of disrupted NMJs, but appears to be due, at least in part, to the complete loss of muscle fibres following damag

    Lipopolysaccharide directly alters renal tubule transport through distinct TLR4-dependent pathways in basolateral and apical membranes

    No full text
    Bacterial infection of the kidney is associated with renal tubule dysfunction and dysregulation of systemic electrolyte balance. Whether bacterial molecules directly affect renal tubule transport is unknown. We examined the effects of LPS on HCO3− absorption in the isolated rat and mouse medullary thick ascending limb (MTAL). LPS decreased HCO3− absorption when added to bath or lumen. The MEK/ERK inhibitor U0126 eliminated inhibition by bath LPS but had no effect on inhibition by lumen LPS. Conversely, the mammalian target of rapamycin (mTOR) inhibitor rapamycin eliminated inhibition by lumen LPS but had no effect on inhibition by bath LPS. Inhibiting basolateral Na+/H+ exchange with amiloride eliminated inhibition of HCO3− absorption by lumen but not bath LPS. Confocal immunofluorescence showed expression of TLR4 in basolateral and apical membrane domains. Inhibition of HCO3− absorption by bath and lumen LPS was eliminated in MTALs from TLR4−/− mice. Thus LPS inhibits HCO3− absorption through distinct TLR4-dependent pathways in basolateral and apical membranes. These results establish that bacterial molecules can directly impair the transport function of renal tubules, identifying a new mechanism contributing to tubule dysfunction during bacterial infection. The LPS-induced reduction in luminal acidification may contribute to Gram-negative pathogenicity by promoting bacterial adherence and growth and impairing correction of infection-induced systemic acid-base disorders

    Regulation of mRNA translation in renal physiology and disease

    No full text
    Translation, a process of generating a peptide from the codons present in messenger RNA, can be a site of independent regulation of protein synthesis; it has not been well studied in the kidney. Translation occurs in three stages (initiation, elongation, and termination), each with its own set of regulatory factors. Mechanisms controlling translation include small inhibitory RNAs such as microRNAs, binding proteins, and signaling reactions. Role of translation in renal injury in diabetes, endoplasmic reticulum stress, acute kidney injury, and, in physiological adaptation to loss of nephrons is reviewed here. Contribution of mRNA translation to physiology and disease is not well understood. Because it is involved in such diverse areas as development and cancer, it should prove a fertile field for investigation in renal science

    Chloride channel accessory 1 integrates chloride channel activity and mTORC1 in aging‐related kidney injury

    No full text
    The mechanism of kidney injury in aging are not well understood. In order to identify hitherto unknown pathways of aging‐related kidney injury, we performed RNA‐Seq on kidney extracts of young and aged mice. Expression of chloride (Cl) channel accessory 1 (CLCA1) mRNA and protein was increased in the kidneys of aged mice. Immunostaining showed a marked increase in CLCLA1 expression in the proximal tubules of the kidney from aged mice. Increased kidney CLCA1 gene expression also correlated with aging in marmosets and in a human cohort. In aging mice, increased renal cortical CLCA1 content was associated with hydrogen sulfide (H2S) deficiency, which was ameliorated by administering sodium hydrosulfide (NaHS), a source of H2S. In order to study whether increased CLCA1 expression leads to injury phenotype and the mechanisms involved, stable transfection of proximal tubule epithelial cells overexpressing human CLCA1 (hCLCA1) was performed. Overexpression of hCLCA1 augmented Cl− current via the Ca++‐dependent Cl− channel TMEM16A (anoctamin‐1) by patch‐clamp studies. hCLCA1 overexpression also increased the expression of fibronectin, a matrix protein, and induced the senescence‐associated secretory phenotype (SASP). Mechanistic studies underlying these changes showed that hCLCA1 overexpression leads to inhibition of AMPK activity and stimulation of mTORC1 as cellular signaling determinants of injury. Both TMEM16A inhibitor and NaHS reversed these signaling events and prevented changes in fibronectin and SASP. We conclude that CLCA1‐TMEM16A‐Cl− current pathway is a novel mediator of kidney injury in aging that is regulated by endogenous H2S.Chloride channel accessory 1 expression is increased in the tubular epithelial cells of aged kidneys. In vitro experiments show that CLCA1 augments the activity of TMEM16A, a Ca++‐dependent Chloride Channel, activates mTORC1, augments the synthesis of matrix proteins, and induces SASP, whcih contribute to aging associated kidney injury.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/168458/1/acel13407_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/168458/2/acel13407-sup-0001-Supinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/168458/3/acel13407.pd
    corecore