61 research outputs found

    Frequently asked questions about chlorophyll fluorescence, the sequel

    Get PDF
    [EN] Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122: 121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additionalChl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F-V/F-M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge fromdifferent Chl a fluorescence analysis domains, yielding in several cases new insights.Kalaji, H.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.... (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research. 132(1):13-66. https://doi.org/10.1007/s11120-016-0318-yS13661321Adams WW III, Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Plant 186:390–398Adams WW III, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration series chlorophyll fluorescence: a signature of photosynthesis, vol 19. Springer, Dordrecht, pp 583–604Adams WW III, Demmig-Adams B, Winter K, Schreiber U (1990a) The ratio of variable to maximum chlorophyll fluorescence from photosystem II, measured in leaves at ambient temperature and at 77 K, as an indicator of the photon yield of photosynthesis. Planta 180:166–174Adams WW III, Winter K, Schreiber U, Schramel P (1990b) Photosynthesis and chlorophyll fluorescence characteristics in relationship to changes in pigment and element composition of leaves of Platanus occidentalis L. during autumnal senescence. Plant Physiol 93:1184–1190Alfonso M, Montoya G, Cases R, Rodriguez R, Picorel R (1994) Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33:10494–10500Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B Biol 104:1–8Allakhverdiev SI, Klimov VV, Carpentier R (1994) Variable thermal emission and chlorophyll fluorescence in photosystem II particles. Proc Natl Acad Sci USA 491:281–285Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples platoquinone redox state to distribution of excitation energy between photosystems. Nature 291:21–25Amesz J, van Gorkom HJ (1978) Delayed fluorescence in photosynthesis. Annu Rev Plant Physiol 29:47–66Ananyev GM, Dismukes GC (1996) Assembly of the tetra-Mn site of photosynthetic water oxidation by photoactivation: Mn stoichiometry and detection of a new intermediate. Biochemistry 35:4102–4109Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organization in sun/shade acclimation. Aust J Plant Physiol 15:11–26Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 84:173–180Anithakumari AM, Nataraja KN, Visser RGF, van der Linden G (2012) Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol Breed 30:1413–1429Antal TK, Krendeleva TE, Rubin AB (2007) Study of photosystem 2 heterogeneity in the sulfur-deficient green alga Chlamydomonas reinhardtii. Photosynth Res 94:13–22Antal TK, Matorin DN, Ilyash LV, Volgusheva AA, Osipov A, Konyuhow IV, Krendeleva TE, Rubin AB (2009) Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer. Photosynth Res 102:67–76Araus JL, Amaro T, Voltas J, Nakkoul H, Nachit MM (1998) Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. Field Crops Res 55:209–223Argyroudi-Akoyunoglou J (1984) The 77 K fluorescence spectrum of the Photosystem I pigment-protein complex CPIa. FEBS Lett 171:47–53Arnold WA (1991) Experiments. Photosynth Res 27:73–82Arnold WA, Thompson J (1956) Delayed light production by blue-green algae, red algae and purple bacteria. J Gen Physiol 39:311–318Aro EM, Hundal T, Carlberg I, Andersson B (1990) In vitro studies on light-induced inhibition of PSII and D1-protein degradation at low temperatures. Biochim Biophys Acta 1019:269–275Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation protein damage and turnover. Biochim Biophys Acta 1143:113–134Arsalane W, Parésys G, Duval JC, Wilhelm C, Conrad R, Büchel C (1993) A new fluorometric device to measure the in vivo chlorophyll a fluorescence yield in microalgae and its use as a herbicide monitor. Eur J Phycol 28:247–252Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:659–668Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493Barber J, Malkin S, Telfer A (1989) The origin of chlorophyll fluorescence in vivo and its quenching by the photosystem II reaction centre. Philos Trans R Soc Lond B 323:227–239Barra M, Haumann M, Loja P, Krivanek R, Grundmeier A, Dau H (2006) Intermediates in assembly by photoactivation after thermally accelerated disassembly of the manganese complex of photosynthetic water oxidation. Biochemistry 45:14523–14532Baumann HA, Morrison L, Stengel DB (2009) Metal accumulation and toxicity measured by PAM-chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol Environ Safe 72:1063–1075Bauwe H, Hagemann M, Fernie A (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336Beck WF, Brudvig GW (1987) Reactions of hydroxylamine with the electron-donor side of photosystem II. Biochemistry 26:8285–8295Belgio E, Kapitonova E, Chmeliov J, Duffy CDP, Ungerer P, Valkunas L, Ruban AV (2014) Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat Commun 5:4433. doi: 10.1038/ncomms5433Bell DH, Hipkins MF (1985) Analysis of fluorescence induction curves from pea chloroplasts: photosystem II reaction centre heterogeneity. Biochim Biophys Acta 807:255–262Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895Belyaeva NE, Schmitt F-J, Paschenko VZ, Riznichenko GY, Rubin AB (2015) Modeling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns–10 s time scale. Photosynth Res 125:123–140Bennett J (1977) Phosphorylation of chloroplast membrane polypeptides. Nature 269:344–346Bennett J (1983) Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein. Biochem J 212:1–13Bennett J, Shaw EK, Michel H (1988) Cytochrome b6f complex is required for phosphorylation of light-harvesting chlorophyll a/b complex II in chloroplast photosynthetic membranes. Eur J Biochem 171:95–100Bennoun P (2002) The present model for chlororespiration. Photosynth Res 73:273–277Bennoun P, Li Y-S (1973) New results on the mode of action of 3,-(3,4-dichlorophenyl)-1,1-dimethylurea in spinach chloroplasts. Biochim Biophys Acta 292:162–168Berden-Zrimec M, Drinovec L, Zrimec A (2011) Delayed fluorescence. In: Suggett DJ, Borowitzka M, Prášil O (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications, developments in applied phycology, vol 4. Springer, The Netherlands, pp 293–309Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J Exp Bot 58:4019–4026Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie GM, Wittig VE, Rogers A, Long SP, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ 29:2077–2090Betterle N, Ballotari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266Bielczynski LW, Schansker G, Croce R (2016) Effect of light acclimation on the organization of photosystem II super and sub-complexes in Arabidopsis thaliana. Front Plant Sci. doi: 10.3389/fpls.2016.00105Björkman O, Demmig-Adams B (1995) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 17–47Blubaugh DJ, Cheniae GM (1990) Kinetics of photoinhibition in hydroxylamine-extracted photosystem II membranes: relevance to photoactivation and site of electron donation. Biochemistry 29:5109–5118Bock A, Krieger-Liszkay A, Ortiz de Zarate IB, Schönknecht G (2001) Cl—channel inhibitors of the arylaminobenzoate type act as photosystem II herbicides: a functional and structural study. Biochemistry 40:3273–3281Bode S, Quentmeier CC, Liao P-N, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316Boekema EJ, Van Roon H, Van Breemen JFL, Dekker JP (1999) Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Eur J Biochem 266:444–452Bolhar-Nordenkampf HR, Long SP, Baker NR, Öquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current Instrumentation. Funct Ecol 3:497–514Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S (2006) Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225:1–12Bouges-Bocquet B (1980) Kinetic models for the electron donors of photosystem II of photosynthesis. Biochim Biophys Acta 594:85–103Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve; changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystem I and II. Biochim Biophys Acta 635:542–551Brestič M, Živčák M (2013) PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Das AB, Rout GR (eds) Molecular stress physiology of plants. Springer, New Dehli, pp 87–131Brestič M, Cornic G, Fryer MJ, Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196:450–457Brestič M, Živčák M, Kalaji HM, Allakhverdiev SI, Carpentier R (2012) Photosystem II thermo-stability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105Brody SS, Rabinowitch E (1957) Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125:555–563Brudvig GW, Casey JL, Sauer K (1983) The effect of temperature on the formation and decay of the multiline EPR signal species associated with photosynthetic oxygen evolution. Biochim Biophys Acta 723:366–371Bukhov NG, Boucher N, Carpentier R (1997) The correlation between the induction kinetics of the photoacoustic signal and chlorophyll fluorescence in barley leaves is governed by changes in the redox state of the photosystem II acceptor side; a study under atmospheric and high CO2 concentrations. Can J Bot 75:1399–1406Bukhov N, Egorova E, Krendeleva T, Rubin A, Wiese C, Heber U (2001) Relaxation of variable chlorophyll fluorescence after illumination of dark-adapted barley leaves as influenced by the redox states of electron carriers. Photosynth Res 70:155–166Buschmann C, Koscányi L (1989) Light-induced heat production correlated with chlorophyll fluorescence and its quenching. Photosynth Res 21:129–136Bussotti F (2004) Assessment of stress conditions in Quercus ilex L. leaves by O-J-I-P chlorophyll a fluorescence analysis. Plant Biosystems 13:101–109Bussotti F, Agati G, Desotgiu R, Matteini P, Tani C (2005) Ozone foliar symptoms in woody plants assessed with ultrastructural and fluorescence analysis. New Phytol 166:941–955Bussotti F, Desotgiu R, Cascio C, Pollastrini M, Gravano E, Gerosa G, Marzuoli R, Nali C, Lorenzini G, Salvatori E, Manes F, Schaub M, Strasser RJ (2011a) Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ Exp Bot 73:19–30Bussotti F, Pollastrini M, Cascio C, Desotgiu R, Gerosa G, Marzuoli R, Nali C, Lorenzini G, Pellegrini E, Carucci MG, Salvatori E, Fusaro L, Piccotto M, Malaspina P, Manfredi A, Roccotello E, Toscano S, Gottardini E, Cristofori A, Fini A, Weber D, Baldassarre V, Barbanti L, Monti A, Strasser RJ (2011b) Conclusive remarks. Reliability and comparability of chlorophyll fluorescence data from several field teams. Environ Exp Bot 73:116–119Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378Byrdin M, Rimke I, Schlodder E, Stehlik D, Roelofs TA (2000) Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: Are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J 79:992–1007Caffarri S, Croce R, Cattivelli L, Bassi R (2004) A look within LHCII: differential analysis of the Lhcb1-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43:9467–9476Calatayud A, Ramirez JW, Iglesias DJ, Barreno E (2002) Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant 116:308–316Cascio C, Schaub M, Novak K, Desotgiu R, Bussotti F, Strasser RJ (2010) Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions. Environ Exp Bot 68:188–197Cazzaniga S, Dall’Osto L, Kong S-G, Wada M, Bassi R (2013) Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis. Plant J 76:568–579Ceppi MG, Oukarroum A, Çiçek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288Chaudhary N, Singh S, Agrawal SB, Agrawal M (2013) Assessment of six Indian cultivars of mung bean against ozone by using foliar injury index and changes in carbon assimilation, gas exchange, chlorophyll fluorescence and photosynthetic pigments. Environ Monit Assess 185:7793–7807Chen J, Kell A, Acharya K, Kupitz C, Fromme P, Jankowiak R (2015) Critical assessment of the emission spectra of various photosystem II core complexes. Photosynth Res 124:253–265Cheng L, Fuchigami LH, Breen PJ (2000) Light absorption and partitioning in relation to nitrogen content ‘Fuji’ apple leaves. J Am Soc Hortic Sci 125:581–587Choi CJ, Berges JA, Young EB (2012) Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae. Water Res 46:2615–2626Chow WS, Aro EM (2005) Photoinactivation and mechanisms of recovery. In: Wydrzynski T, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 627–648Chow WS, Fan DY, Oguchi R, Jia H, Losciale P, Youn-Il P, He J, Öquist G, Shen YG, Anderson JM (2012) Quantifying and monitoring functional photosystem II and the stoichiometry of the two photosystems in leaf segments: approaches and approximations. Photosynth Res 113:63–74Christensen MG, Teicher HB, Streibig JC (2003) Linking fluorescence induction curve and biomass in herbicide screening. Pest Manag Sci 59:1303–1310Codrea CM, Aittokallio T, Keränen M, Tyystjärvi E, Nevalainen OS (2003) Feature learning with a genetic algorithm for fluorescence fingerprinting of plant species. Pattern Recognit Lett 24:2663–2673Conjeaud H, Mathis P (1980) The effect of pH on the reduction kinetics of P-680 in tris-treated chloroplasts. Biochim Biophys Acta 590:353–359Conrad R, Büchel C, Wilhelm C, Arsalane W, Berkaloff C, Duval JC (1993) Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J Appl Phycol 5:505–516Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publisher, Dordrecht, pp 347–366Cornic G, Fresneau C (2002) Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystems II during a mild drought. Ann Bot 89:887–894Correia MJ, Chaves MMC, Pereira JS (1990) Afternoon depression in photosynthesis in grapevine leaves—evidence for a high light stress effect. J Exp Bot 41:417–426Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C, Guidi L, Lorenzini G (2016) Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol Plant 157:69–84Croce R, Zucchelli G, Garlaschi FM, Bassi R, Jennings RC (1997) Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry 35:8572–8579Cser K, Vass I (2007) Radiative and non-radiative charge recombination pathways in photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6308. Biochim Biophys Acta 1767:233–243Czyczyło-Mysza I, Tyrka M, Marcińska Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie SA (2013) Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed 32:189–210D’Haene SE, Sobotka R, Bučinská L, Dekker JP, Komenda J (2015) Interaction of the PsbH subunit with a chlorophyll bound to histidine 114 of CP47 is responsible for the red 77 K fluorescence of Photosystem II. Biochim Biophys Acta 1847:1327–1334Dang NC, Zazubovich V, Reppert M, Neupane B, Picorel R, Seibert M, Jankowiak R (2008) The CP43 proximal antenna complex of higher plant photosystem II revisited: modeling and hole burning study. J Phys Chem B 112:9921–9933Dau H (1994) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60:1–23Dau H, Sauer K (1992) Electric field effect on the picosecond fluorescence of photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim Biophys Acta 1102:91–106Dau H, Zaharieva I, Haumann M (2012) Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 16:3–10de Wijn R, van Gorkom HJ (2001) Kinetics of electron transfer from QA to QB in photosystem II. Biochemistry 40:11912–11922de Wijn R, van Gorkom HJ (2002) The rate of charge recombination in photosystem II. Biochim Biophys Acta 1553:302–308Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352Degl’Innocenti E, Guidi L, Soldatini GF (2002) Characteriz

    Pharmaceutical Particle Engineering via Spray Drying

    Full text link

    Wplyw dodatkow stabilizujacych kinetyke inaktywacji cieplnej alfa-amylazy z Aspergillus oryzae

    No full text

    Spray drying in food industry

    No full text
    Suszenie rozpyłowe jest techniką, która w w znaczący sposób zmieniła się od czasów jej pierwszych pionierskskich zastososowań w przemyśle spożywczym. W artykule scharakteryzowano podstawowe parametry warunkujące przebieg procesu i przedstawiono zagadnienia związane z suszeniem trzech grup produktów: napojów typu instant, produktów pochodzenia mikrobiologicznego oraz soków owocowych. Omówiono również aktualnie najnowsze kierunki rozwoju tego procesu.Spray drying is a technique which has been significantly modified since its first applications in food industry. In this paper the basic paremeters of spray drying were described, the drying of three groups of products was discussed: instant beverages, products of microbiological origin and fruit juices. Additionally, some curent and the newest trends in spray drying development were also presented

    Spray-drying of enzymes: causes of inactivation, methods and mechanisms of stabilizing them

    No full text
    Inaktywacja enzymów wywołana procesem suszenia oraz próby opisu jej przyczyn i mechanizmów są przedmiotem wielu publikacji naukowych. W niniejszym artykule przedstawiono analizę najważniejszych przyczyn inaktywacji oraz podano przykłady badań obrazujących opisane mechanizmy. Do przyczyn tych zaliczono: działanie podwyższonej temperatury, niekorzystny wpływ ubytku wody z układu, niekorzystny wpływ adsorpcji białek na powierzchni międzyfazowej oraz uszkodzenia mechaniczne. Opisano również, oraz zilustrowano przykładami, metody i mechanizmy stabilizacji aktywności enzymów w czasie suszenia rozpyłowego, takie jak: zastępowanie wody, stan szklisty oraz adsorpcja międzyfazowa.Enzyme inactivation generated by the spray drying process and attempts to describe both the possible causes and the mechanisms thereof constitute a subject matter of many scientific papers. In the present paper, the analysis of the most important causes of inactivation is presented, and some examples are given to illustrate the mechanisms described. The causes of inactivation include: impact of increased temperature, adverse effect of removing water from the system, adverse effect of protein adsorption on interfacial surface, and mechanical damages. Some methods and mechanism applied to stabilize the enzyme activity during spray-drying are described and exemplified, such as: water replacement, glassy state, and interfacial adsorption

    Właściwości fizyko-chemiczne preparatów miodowych suszonych rozpyłowo

    No full text
    The aim of work was to characterise the physical and chemical properties of spray dried honey preparations and the changes in these properties during storage. Spray drying was performed at inlet air temperature 160 and 200°C, atomising disk speed 32 000 and 38 000 rpm, with the use of two types of carriers: dextrin and maltodextrin. The resulting powders had the desirable physical properties: low water content and activity, complete solubility and low cohesiveness. The powders produced with the use of dextrin had higher hygroscopicity and poorer solubility, they were also characterised by the highest water absorption during storage. Powders obtained with the use of reduced atomisation speed were the most stable in terms of water absorption and the changes of hygroscopicity during storage. Solubility of all powders was stable during storage.Celem pracy było określenie właściwości fizycznych i chemicznych preparatów miodowych suszonych rozpyłowo oraz zmiany tych właściwości w czasie przechowywania. Suszenie rozpyłowe przeprowadzono przy temperaturze powietrza wlotowego 160 do 200°C, szybkość obrotowa dysku rozpylającego wynosiła 32 000 i 38 000 obrotów na minutę, użyto dwóch rodzajów nośników: dekstrynę i maltodekstrynę. Otrzymane proszki miały pożądane właściwości fizyczne: niską zawartość i aktywność wody, całkowitą rozpuszczalność i niską spójność. Proszki wytworzone z wykorzystaniem dekstryny miały wyższą higroskopijność i gorszą rozpuszczalność, charakteryzowały się najwyższą ilością wchłoniętej wody w czasie przechowywania. Proszki otrzymane z wykorzystaniem zmniejszonej szybkości obrotowej dysku rozpylającego były bardziej stabilne pod względem absorpcji wody i zmiany higroskopijności podczas przechowywania. Rozpuszczalność wszystkich proszków była stabilna w czasie przechowywania

    Metody suszenia mikroorganizmow i produktow syntezy mikrobiologicznej

    No full text
    Przedstawiono charakterystykę mikroorganizmów i produktów syntezy mikrobiologicznej (jako obiektów suszenia) oraz podstawowe przyczyny degradacji tych materiałów w czasie odwadniania. Zaprezentowano najczęściej stosowane metody suszenia, pozwalające na zachowanie aktywności biologicznej duktów: suszenie rozpyłowe, fluidyzacyjne i sublimacyjne. Wyodrębniono również suszenie na nośnikach, charakterystyczne dla grupy materiałów biotechnologicznych. Opisano także nowe, pozostające w e prób laboratoryjnych, niekonwencjonalne sposoby suszenia.Feature of microorganisms and products of microbiological synthesis as drying objects and basic reasons of the products degradation during dewatering were presented. Most often applied drying methods, which allow of keeping of products biological activity: spray, fluid and freeze drying were described. Drying on carriers, characteristic for biotechnological products, was indicated. Remaining in phase of laboratory tests, unconventional ways of drying were also presented

    Effect of kappa carrageenan hydrolysates on limiting excessive ice crystals growth in ice creams

    No full text
    Celem pracy było pozyskanie nowych substancji stabilizujących i zaprojektowanie układu mającego na celu ograniczenie procesu rekrystalizacji w trakcie przechowywania lodów mlecznych. Pierwszy etap badań obejmował proces hydrolizy kwasowej κ-karagenu, z wykorzystaniem H₂SO₄ i HCl. Przy użyciu chromatografii żelowej SEC określono masę cząsteczkową otrzymanych hydrolizatów. Następnie podjęto próbę wykorzystania otrzymanych związków jako stabilizatorów do lodów mlecznych. Kolejnym etapem badań była analiza procesu rekrystalizacji na podstawie fotografii kryształów lodu wykonanych po przygotowaniu lodów mlecznych, po tygodniu oraz po miesiącu ich przechowywania, za pomocą mikroskopu Alphaphot-2 YS2 i kamery Nikon DS-F. W badanych próbkach oprócz κ-karagenu i jego pochodnych zastosowano również dodatek żelatyny, gumy guar, alkoholu i gotowych mieszanek stabilizujących firmy Danisco (DuPont). Hydroliza kwasowa z zastosowanie HCl i H₂SO₄ wpłynęła na redukcję masy cząsteczkowej κ-karagenu ok. 10-krotnie. Na podstawie fotografii kryształów lodu zawartych w lodach mlecznych stwierdzono, że obecność hydrolizatów κ-karagenu miała większy wpływ na ograniczenie procesu rekrystalizacji niż dodatek samego κ-karagenu czy dodatek przemysłowych mieszanek stabilizujących. Po miesiącu przechowania średnica kryształów lodu w próbkach lodów z dodatkiem hydrolizatu κ-karagenu uzyskanego po hydrolizie HCl nie przekroczyła 16 μm, podczas gdy w próbkach z dodatkiem niehydrolizowanego κ-karagenu, po tym samym czasie – przekraczała 25 μm.The objective of the research study was to produce new stabilizing substances and to develop a system to reduce the recrystallization process while storing ice cream products. The first stage of the research comprised an acid hydrolysis process of κ-carrageenan with the use of H₂SO₄ and HCl. A SEC gel permeation chromatography was applied to determine the weight of the hydrolysates produced. Then, an attempt was made to utilize the compounds produced as stabilizers for ice creams. The next research stage was to analyze, with the use of Alphaphot-2 YS2 microscope and Nikon DS-F camera, the process of recrystallization on the basis of the ice crystals images taken instantly after the ice creams were made, after one week and, next, one month of storing them. In addition to κ-carrageenan and its derivatives, gelatin, guar gum, alcohol, and ready-mixed stabilizing mixtures manufactured by Danisco Co. (DuPont) were added to the samples investigated. The acid hydrolysis with the use of H₂SO₄ and HCl caused the molar mass of κ-carrageenan to decrease by ca. 10 times. Based on the images of ice crystals contained in ice cream products, it was found that the presence of κ-carrageenan hydrolysates had a greater effect on reducing the recrystallization process than the addition of κ-carrageenan alone or the addition of industrial compound stabilizers. As regards the ice cream samples with the added κ-carrageenan hydrolysate after hydrolysis with HCl, after one month of storing the ice creams, the equivalent diameter of ice crystals therein did not exceed 16 μm, whereas, as regards the ice cream samples stored for one month and with the non-hydrolyzed κ-carrageenan added, that diameter exceeded 25 μm

    Textural characteristics of selected fat blends

    No full text
    Celem pracy było określenie wyróżników tekstury wybranych miksów tłuszczowych za pomocą testów penetracji z próbnikami stożkowym i cylindrycznym oraz w teście smarowności. Pomiary wykonano w kontrolowanych warunkach temperatury w 4 i 20°C. Miksy tłuszczowe zawierały od 62 do 70% tłuszczu ogółem, w tym tłuszcz mleczny stanowił w produkcie od 10 do 52%. Wśród badanych próbek najmniejszą twardością charakteryzowały się miksy, w których w fazie tłuszczowej przeważał tłuszcz mleczny w stosunku do dodanego tłuszczu roślinnego. Duża twardość miksów o zawartości tłuszczu roślinnego powyżej 45% mogła wynikać m.in. z zawartości nasyconych wyższych kwasów tłuszczowych w produkcie. Zastosowanie testu penetracji z wykorzystaniem końcówki stożkowej wpłynęło na większą powtarzalność pomiarów, co ułatwiło interpretację i ocenę tekstury badanych miksów w porównaniu do końcówki cylindrycznej. Smarowność miksów pogarszała się wraz ze wzrostem ich twardości.Spreadable mixed fat product can be based on milk fat blended with vegetable oils or butter blended with vegetable fats. These fat blends are more popular because consumers expectthe products with attractive sensory properties of butter with spreadability typical for margarines. The texture of fat blends is one of most important feature in the quality evaluation. The aim of this study was an instrumental analysis of texture attributes of selected commercial fat blends with total fat content in the range of 62–70%. The content of milk fat in blends ranged from 10 to 52%. Texture of blends were analysed using the penetration tests with a cylinder probe P/5 and also with conical probe P/45C. Spreadability was measured using a TA-HDplus Texture Analyzer with a TTC Spreadability Rig. Thermal cabinet TCHD/LN2 integrated with a texture analyser provided an accurately controlled temperature environment during instrumental tests. The selected texture attributes (hardness, adhesiveness, consistency, stickiness, softness, spreadability) were analysed at temperature of 4 and 20°C. The results obtained at different temperature showed the decrease of hardness and penetration work was observed at room temperature. The lowest hardness was detected for blends with high content of milk fat. The samples with substantial addition of vegetables fats were harder what can be related with their composition e.g. the addition of palm oil can cause the increase of saturated fatty acids. The addition of vegetable oils caused the hardening of blends. The highest hardness and adhesiveness and the lowest spreadability values were recorded for blends with 10% of milk fat and 52% of vegetable oils (palm and linseed oils) as well as for blends of 25% of butter and 45% of vegetable fats. The higher hardness and the lower spreadability of fat blends was observed. It was concluded that the penetration test with a conical probe was well-suited and applicable for measuring the texture attributes of fat blend in comparison to penetration with cylindrical probe. The cone penetration test enabled to assay diversity of blends texture. The changes of penetration force of blends during the period when the samples were removed from refrigeration and brought to ambient temperature were also recorded. The hardness of sample 10/62 (contained 10% of milk fat and 52% of vegetable oils) significantly decreased during the first 20 min of exposure to room conditions. More stable in terms of hardness were blends with higher content of milk fat
    corecore