53,424 research outputs found

    Braggoriton--Excitation in Photonic Crystal Infiltrated with Polarizable Medium

    Full text link
    Light propagation in a photonic crystal infiltrated with polarizable molecules is considered. We demonstrate that the interplay between the spatial dispersion caused by Bragg diffraction and polaritonic frequency dispersion gives rise to novel propagating excitations, or braggoritons, with intragap frequencies. We derive the braggoriton dispersion relation and show that it is governed by two parameters, namely, the strength of light-matter interaction and detuning between the Bragg frequency and that of the infiltrated molecules. We also study defect-induced states when the photonic band gap is divided into two subgaps by the braggoritonic branches and find that each defect creates two intragap localized states inside each subgap.Comment: LaTeX, 8 pages, 5 figure

    Radiating dipoles in photonic crystals

    Get PDF
    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.Comment: Phys. Rev. E, accepte

    Fidelity for imperfect postselection

    Full text link
    We describe a simple measure of fidelity for mixed state postselecting devices. The measure is most appropriate for postselection where the task performed by the output is only effected by a specific state.Comment: 8 Pages, 8 Figure

    A Tunable Anomalous Hall Effect in a Non-Ferromagnetic System

    Full text link
    We measure the low-field Hall resistivity of a magnetically-doped two-dimensional electron gas as a function of temperature and electrically-gated carrier density. Comparing these results with the carrier density extracted from Shubnikov-de Haas oscillations reveals an excess Hall resistivity that increases with decreasing temperature. This excess Hall resistivity qualitatively tracks the paramagnetic polarization of the sample, in analogy to the ferromagnetic anomalous Hall effect. The data are consistent with skew-scattering of carriers by disorder near the crossover to localization

    Relativistic Radiative Transfer for Spherical Flows

    Full text link
    We present a new complete set of Lagrangian relativistic hydrodynamical equations describing the transfer of energy and momentum between a standard fluid and a radiation fluid in a general non-stationary spherical flow. The new set of equations has been derived for a particular application to the study of the cosmological Quark--Hadron transition but can also be used in other contexts.Comment: 28 pages, 9 postscript figs, Plain Te

    Cosmological evolution of scalar fields and gravitino dark matter in gauge mediation at low reheating temperatures

    Full text link
    We consider the dynamics of the supersymmetry-breaking scalar field and the production of dark matter gravitinos via its decay in a gauge-mediated supersymmetry breaking model with metastable vacuum. We find that the scalar field amplitude and gravitino density are extremely sensitive to the parameters of the hidden sector. For the case of an O'Raifeartaigh sector, we show that the observed dark matter density can be explained by gravitinos even for low reheating temperatures T_{R} < 10 GeV. Such low reheating temperatures may be implied by detection of the NLSP at the LHC if its thermal freeze-out density is in conflict with BBN.Comment: 11 pages RevTex. Extended discussion and minor corrections, conclusions unaltered. Version to be published in JCA

    The Scattering Theory of Oscillator Defects in an Optical Fiber

    Full text link
    We examine harmonic oscillator defects coupled to a photon field in the environs of an optical fiber. Using techniques borrowed or extended from the theory of two dimensional quantum fields with boundaries and defects, we are able to compute exactly a number of interesting quantities. We calculate the scattering S-matrices (i.e. the reflection and transmission amplitudes) of the photons off a single defect. We determine using techniques derived from thermodynamic Bethe ansatz (TBA) the thermodynamic potentials of the interacting photon-defect system. And we compute several correlators of physical interest. We find the photon occupancy at finite temperature, the spontaneous emission spectrum from the decay of an excited state, and the correlation functions of the defect degrees of freedom. In an extension of the single defect theory, we find the photonic band structure that arises from a periodic array of harmonic oscillators. In another extension, we examine a continuous array of defects and exactly derive its dispersion relation. With some differences, the spectrum is similar to that found for EM wave propagation in covalent crystals. We then add to this continuum theory isolated defects, so as to obtain a more realistic model of defects embedded in a frequency dependent dielectric medium. We do this both with a single isolated defect and with an array of isolated defects, and so compute how the S-matrices and the band structure change in a dynamic medium.Comment: 32 pages, TeX with harvmac macros, three postscript figure

    Development of a Next-Generation NIL Library in Arabidopsis Thaliana for Dissecting Complex Traits

    Get PDF
    The identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery. Results: In this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait. Conclusions: The present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.NSF DEB-1022196, DEB-0618302, DEB-0618347, IOS-09221457Integrative Biolog

    Presynchronizing PGF2α and GnRH injections before timed artificial insemination CO-Synch + CIDR program

    Get PDF
    Fixed-time artificial insemination is an effective management tool that reduces the labor associated with more conventional artificial insemination programs requiring detection of estrus. The 7-day CO-Synch + controlled internal drug release (CIDR) insert protocol has been shown to effectively initiate estrus and ovulation in cycling and non-cycling suckled beef cows, producing pregnancy rates at or greater than 50% in beef cows. The gonadotropin-releasing hormone (GnRH) injection that begins the CO-Synch + CIDR program initiates ovulation in a large proportion of cows, particularly anestrous cows. The CIDR, which releases progesterone intravaginally, prevents short estrous cycles that usually follow the first postpartum ovulation in beef cows. Our hypothesis was that inducing estrus with a prostaglandin injection followed 3 days later with a GnRH injection, 7 days before applying the 7-day CO-Synch + CIDR protocol, might increase the percentage of cycling cows that would exhibit synchronous follicular waves after the onset of the CO-Synch + CIDR protocol. We also hypothesized that the additional GnRH injection would increase the percentage of anestrous cows that would ovulate, thereby increasing pregnancy outcomes
    • 

    corecore