53,424 research outputs found
Braggoriton--Excitation in Photonic Crystal Infiltrated with Polarizable Medium
Light propagation in a photonic crystal infiltrated with polarizable
molecules is considered. We demonstrate that the interplay between the spatial
dispersion caused by Bragg diffraction and polaritonic frequency dispersion
gives rise to novel propagating excitations, or braggoritons, with intragap
frequencies. We derive the braggoriton dispersion relation and show that it is
governed by two parameters, namely, the strength of light-matter interaction
and detuning between the Bragg frequency and that of the infiltrated molecules.
We also study defect-induced states when the photonic band gap is divided into
two subgaps by the braggoritonic branches and find that each defect creates two
intragap localized states inside each subgap.Comment: LaTeX, 8 pages, 5 figure
Radiating dipoles in photonic crystals
The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are
modeled by an initially excited harmonic oscillator coupled to a non--Markovian
bath of harmonic oscillators representing the colored electromagnetic vacuum
within the crystal. Realistic coupling constants based on the natural modes of
the Photonic Crystal, i.e., Bloch waves and their associated dispersion
relation, are derived. For simple model systems, well-known results such as
decay times and emission spectra are reproduced. This approach enables direct
incorporation of realistic band structure computations into studies of
radiative emission from atoms and molecules within photonic crystals. We
therefore provide a predictive and interpretative tool for experiments in both
the microwave and optical regimes.Comment: Phys. Rev. E, accepte
Fidelity for imperfect postselection
We describe a simple measure of fidelity for mixed state postselecting
devices. The measure is most appropriate for postselection where the task
performed by the output is only effected by a specific state.Comment: 8 Pages, 8 Figure
A Tunable Anomalous Hall Effect in a Non-Ferromagnetic System
We measure the low-field Hall resistivity of a magnetically-doped
two-dimensional electron gas as a function of temperature and
electrically-gated carrier density. Comparing these results with the carrier
density extracted from Shubnikov-de Haas oscillations reveals an excess Hall
resistivity that increases with decreasing temperature. This excess Hall
resistivity qualitatively tracks the paramagnetic polarization of the sample,
in analogy to the ferromagnetic anomalous Hall effect. The data are consistent
with skew-scattering of carriers by disorder near the crossover to
localization
Relativistic Radiative Transfer for Spherical Flows
We present a new complete set of Lagrangian relativistic hydrodynamical
equations describing the transfer of energy and momentum between a standard
fluid and a radiation fluid in a general non-stationary spherical flow. The new
set of equations has been derived for a particular application to the study of
the cosmological Quark--Hadron transition but can also be used in other
contexts.Comment: 28 pages, 9 postscript figs, Plain Te
Cosmological evolution of scalar fields and gravitino dark matter in gauge mediation at low reheating temperatures
We consider the dynamics of the supersymmetry-breaking scalar field and the
production of dark matter gravitinos via its decay in a gauge-mediated
supersymmetry breaking model with metastable vacuum. We find that the scalar
field amplitude and gravitino density are extremely sensitive to the parameters
of the hidden sector. For the case of an O'Raifeartaigh sector, we show that
the observed dark matter density can be explained by gravitinos even for low
reheating temperatures T_{R} < 10 GeV. Such low reheating temperatures may be
implied by detection of the NLSP at the LHC if its thermal freeze-out density
is in conflict with BBN.Comment: 11 pages RevTex. Extended discussion and minor corrections,
conclusions unaltered. Version to be published in JCA
The Scattering Theory of Oscillator Defects in an Optical Fiber
We examine harmonic oscillator defects coupled to a photon field in the
environs of an optical fiber. Using techniques borrowed or extended from the
theory of two dimensional quantum fields with boundaries and defects, we are
able to compute exactly a number of interesting quantities. We calculate the
scattering S-matrices (i.e. the reflection and transmission amplitudes) of the
photons off a single defect. We determine using techniques derived from
thermodynamic Bethe ansatz (TBA) the thermodynamic potentials of the
interacting photon-defect system. And we compute several correlators of
physical interest. We find the photon occupancy at finite temperature, the
spontaneous emission spectrum from the decay of an excited state, and the
correlation functions of the defect degrees of freedom. In an extension of the
single defect theory, we find the photonic band structure that arises from a
periodic array of harmonic oscillators. In another extension, we examine a
continuous array of defects and exactly derive its dispersion relation. With
some differences, the spectrum is similar to that found for EM wave propagation
in covalent crystals. We then add to this continuum theory isolated defects, so
as to obtain a more realistic model of defects embedded in a frequency
dependent dielectric medium. We do this both with a single isolated defect and
with an array of isolated defects, and so compute how the S-matrices and the
band structure change in a dynamic medium.Comment: 32 pages, TeX with harvmac macros, three postscript figure
Development of a Next-Generation NIL Library in Arabidopsis Thaliana for Dissecting Complex Traits
The identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery. Results: In this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait. Conclusions: The present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.NSF DEB-1022196, DEB-0618302, DEB-0618347, IOS-09221457Integrative Biolog
Presynchronizing PGF2α and GnRH injections before timed artificial insemination CO-Synch + CIDR program
Fixed-time artificial insemination is an effective management tool that reduces the
labor associated with more conventional artificial insemination programs requiring
detection of estrus. The 7-day CO-Synch + controlled internal drug release (CIDR)
insert protocol has been shown to effectively initiate estrus and ovulation in cycling
and non-cycling suckled beef cows, producing pregnancy rates at or greater than 50%
in beef cows. The gonadotropin-releasing hormone (GnRH) injection that begins the
CO-Synch + CIDR program initiates ovulation in a large proportion of cows, particularly
anestrous cows. The CIDR, which releases progesterone intravaginally, prevents
short estrous cycles that usually follow the first postpartum ovulation in beef cows. Our
hypothesis was that inducing estrus with a prostaglandin injection followed 3 days later
with a GnRH injection, 7 days before applying the 7-day CO-Synch + CIDR protocol,
might increase the percentage of cycling cows that would exhibit synchronous follicular
waves after the onset of the CO-Synch + CIDR protocol. We also hypothesized that
the additional GnRH injection would increase the percentage of anestrous cows that
would ovulate, thereby increasing pregnancy outcomes
- âŠ