1,800 research outputs found
Using generalized PowerFlux methods to estimate the parameters of periodic gravitational waves
We investigate methods to estimate the parameters of the gravitational-wave
signal from a spinning neutron star using Fourier transformed segments of the
strain response from an interferometric detector. Estimating the parameters
from the power, we find generalizations of the PowerFlux method. Using
simulated elliptically polarized signals injected into Gaussian noise, we apply
the generalized methods to estimate the squared amplitudes of the plus and
cross polarizations (and, in the most general case, the polarization angle),
and test the relative detection efficiencies of the various methods.Comment: 8 pages, presented at Amalid7, Sydney, Australia (July 2007), fixed
minor typos and clarified discussion to match published CQG version; updated
reference
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Precise calibration of LIGO test mass actuators using photon radiation pressure
Precise calibration of kilometer-scale interferometric gravitational wave
detectors is crucial for source localization and waveform reconstruction. A
technique that uses the radiation pressure of a power-modulated auxiliary laser
to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a
so-called photon calibrator, has been demonstrated previously and has recently
been implemented on the LIGO detectors. In this article, we discuss the
inherent precision and accuracy of the LIGO photon calibrators and several
improvements that have been developed to reduce the estimated voice coil
actuator calibration uncertainties to less than 2 percent (1-sigma). These
improvements include accounting for rotation-induced apparent length variations
caused by interferometer and photon calibrator beam centering offsets, absolute
laser power measurement using temperature-controlled InGaAs photodetectors
mounted on integrating spheres and calibrated by NIST, minimizing errors
induced by localized elastic deformation of the mirror surface by using a
two-beam configuration with the photon calibrator beams symmetrically displaced
about the center of the optic, and simultaneously actuating the test mass with
voice coil actuators and the photon calibrator to minimize fluctuations caused
by the changing interferometer response. The photon calibrator is able to
operate in the most sensitive interferometer configuration, and is expected to
become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors
The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most
luminous source of continuous gravitational-wave radiation for interferometers
such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be
sustained by active accretion of matter from its binary companion. With the
Advanced Detector Era fast approaching, work is underway to develop an array of
robust tools for maximizing the science and detection potential of Sco X-1. We
describe the plans and progress of a project designed to compare the numerous
independent search algorithms currently available. We employ a mock-data
challenge in which the search pipelines are tested for their relative
proficiencies in parameter estimation, computational efficiency, robust- ness,
and most importantly, search sensitivity. The mock-data challenge data contains
an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a
frequency band of 50-1500 Hz. Simulated detector noise was generated assuming
the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO ( Hz). A distribution of signal amplitudes was then
chosen so as to allow a useful comparison of search methodologies. A factor of
2 in strain separates the quietest detected signal, at
strain, from the torque-balance limit at a spin frequency of 300 Hz, although
this limit could range from (25 Hz) to (750 Hz) depending on the unknown frequency of Sco X-1. With future
improvements to the search algorithms and using advanced detector data, our
expectations for probing below the theoretical torque-balance strain limit are
optimistic.Comment: 33 pages, 11 figure
An all-sky search algorithm for continuous gravitational waves from spinning neutron stars in binary systems
Rapidly spinning neutron stars with non-axisymmetric mass distributions are
expected to generate quasi-monochromatic continuous gravitational waves. While
many searches for unknown, isolated spinning neutron stars have been carried
out, there have been no previous searches for unknown sources in binary
systems. Since current search methods for unknown, isolated neutron stars are
already computationally limited, expanding the parameter space searched to
include binary systems is a formidable challenge. We present a new hierarchical
binary search method called TwoSpect, which exploits the periodic orbital
modulations of the continuous waves by searching for patterns in doubly
Fourier-transformed data. We will describe the TwoSpect search pipeline,
including its mitigation of detector noise variations and corrections for
Doppler frequency modulation caused by changing detector velocity. Tests on
Gaussian noise and on a set of simulated signals will be presented.Comment: 22 pages, 10 figures, 1 table, Submitted to Classical and Quantum
Gravit
Will He Be There?: Mediating malaria, immobilizing science
This paper focuses on an unsettling example of experimental labour â the Human Landing Catch (HLC). The HLC is a cheap and reliable technique to produce data on mosquito densities in a defined area. It requires only a human volunteer to sit over night with his legs exposed, a headlamp to spot mosquitoes, and a rubber tube and plastic cup to catch them as they come to feed on him. The HLC formed the central methodological and operational strategy for a malaria control that took place in Dar es Salaam, funded by the Bill and Melinda Gates Foundation. This paper analyses the epistemic and economic value of this experimental scenario by examining in detail the work it entails. In conceptualizing the different species of productivity associated with the HLC, of particular interest is the surprising fact that he is there. This paper argues that the interplay of mobility and immobility offers a way to rethink the value of research within interlocking circulations of capital, science, mosquitoes and men
Finitely presented wreath products and double coset decompositions
We characterize which permutational wreath products W^(X)\rtimes G are
finitely presented. This occurs if and only if G and W are finitely presented,
G acts on X with finitely generated stabilizers, and with finitely many orbits
on the cartesian square X^2. On the one hand, this extends a result of G.
Baumslag about standard wreath products; on the other hand, this provides
nontrivial examples of finitely presented groups. For instance, we obtain two
quasi-isometric finitely presented groups, one of which is torsion-free and the
other has an infinite torsion subgroup.
Motivated by the characterization above, we discuss the following question:
which finitely generated groups can have a finitely generated subgroup with
finitely many double cosets? The discussion involves properties related to the
structure of maximal subgroups, and to the profinite topology.Comment: 21 pages; no figure. To appear in Geom. Dedicat
Methods for Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO Data
The LIGO detectors are sensitive to a variety of noise transients of
non-astrophysical origin. Instrumental glitches and environmental disturbances
increase the false alarm rate in the searches for gravitational waves. Using
times already identified when the interferometers produced data of questionable
quality, or when the channels that monitor the interferometer indicated
non-stationarity, we have developed techniques to safely and effectively veto
false triggers from the compact binary coalescences (CBCs) search pipeline
- âŠ