167 research outputs found

    Simulating Flaring Events in Complex Active Regions Driven by Observed Magnetograms

    Full text link
    We interpret solar flares as events originating from active regions that have reached the Self Organized Critical state, by using a refined Cellular Automaton model with initial conditions derived from observations. Aims: We investigate whether the system, with its imposed physical elements,reaches a Self Organized Critical state and whether well-known statistical properties of flares, such as scaling laws observed in the distribution functions of characteristic parameters, are reproduced after this state has been reached. Results: Our results show that Self Organized Criticality is indeed reached when applying specific loading and relaxation rules. Power law indices obtained from the distribution functions of the modeled flaring events are in good agreement with observations. Single power laws (peak and total flare energy) as well as power laws with exponential cutoff and double power laws (flare duration) are obtained. The results are also compared with observational X-ray data from GOES satellite for our active-region sample. Conclusions: We conclude that well-known statistical properties of flares are reproduced after the system has reached Self Organized Criticality. A significant enhancement of our refined Cellular Automaton model is that it commences the simulation from observed vector magnetograms, thus facilitating energy calculation in physical units. The model described in this study remains consistent with fundamental physical requirements, and imposes physically meaningful driving and redistribution rules.Comment: 14 pages; 12 figures; 6 tables - A&A, in pres

    Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System

    Get PDF
    Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial x-ray diffraction datasets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of x-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs’ phase rule into the algorithm, physically meaningful phase maps are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V-Mn-Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudo-ternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band-gap energy of MnV2O6. The open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery

    First πK\pi K atom lifetime and πK\pi K scattering length measurements

    Get PDF
    The results of a search for hydrogen-like atoms consisting of πK±\pi^{\mp}K^{\pm} mesons are presented. Evidence for πK\pi K atom production by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen in terms of characteristic πK\pi K pairs from their breakup in the same target (178±49178 \pm 49) and from Coulomb final state interaction (653±42653 \pm 42). Using these results the analysis yields a first value for the πK\pi K atom lifetime of τ=(2.51.8+3.0)\tau=(2.5_{-1.8}^{+3.0}) fs and a first model-independent measurement of the S-wave isospin-odd πK\pi K scattering length a0=13a1/2a3/2=(0.110.04+0.09)Mπ1\left|a_0^-\right|=\frac{1}{3}\left|a_{1/2}-a_{3/2}\right|= \left(0.11_{-0.04}^{+0.09} \right)M_{\pi}^{-1} (aIa_I for isospin II).Comment: 14 pages, 8 figure

    Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+

    Full text link
    We report the first observation of the Cabibbo-suppressed charm baryon decay Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ -> X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) = 0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +- 0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let

    First observation of a narrow charm-strange meson DsJ(2632) -> Ds eta and D0 K+

    Full text link
    We report the first observation of a charm-strange meson DsJ(2632) at a mass of 2632.6+/-1.6 MeV/c^2 in data from SELEX, the charm hadro-production experiment E781 at Fermilab. This state is seen in two decay modes, Ds eta and D0 K+. In the Ds eta decay mode we observe an excess of 49.3 events with a significance of 7.2sigma at a mass of 2635.9+/-2.9 MeV/c^2. There is a corresponding peak of 14 events with a significance of 5.3sigma at 2631.5+/-1.9 MeV/c^2 in the decay mode D0 K+. The decay width of this state is <17 MeV/c^2 at 90% confidence level. The relative branching ratio Gamma(D0K+)/Gamma(Dseta) is 0.16+/-0.06. The mechanism which keeps this state narrow is unclear. Its decay pattern is also unusual, being dominated by the Ds eta decay mode.Comment: 5 pages, 3 included eps figures. v2 as accepted for publication by PR

    First Measurement of pi e -> pi e gamma Pion Virtual Compton Scattering

    Full text link
    Pion Virtual Compton Scattering (VCS) via the reaction pi e --> pi e gamma was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c pi- beam incident on target atomic electrons, detecting the incident pi- and the final state pi-, electron and gamma. Theoretical predictions based on chiral perturbation theory are incorporated into a Monte Carlo simulation of the experiment and are compared to the data. The number of reconstructed events (9) and their distribution with respect to the kinematic variables (for the kinematic region studied) are in reasonable accord with the predictions. The corresponding pi- VCS experimental cross section is sigma=38.8+-13 nb, in agreement with the theoretical expectation sigma=34.7 nb.Comment: 10 pages, 12 figures, 4 tables, 25 references, SELEX home page is http://fn781a.fnal.gov/, revised July 21, 2002 in response to journal referee Comment

    First Observation of the Doubly Charmed Baryon Xi_cc^+

    Full text link
    We observe a signal for the doubly charmed baryon Xi_cc^+ in the charged decay mode Xi_cc^+ --> Lambda_c^+ K- pi+ in data from SELEX, the charm hadro-production experiment at Fermilab. We observe an excess of 15.9 events over an expected background of 6.1 +/- 0.5 events, a statistical significance of 6.3sigma. The observed mass of this state is (3519 +/- 1) MeV/c^2. The Gaussian mass width of this state is 3MeV/c^2, consistent with resolution; its lifetime is less than 33fsec at 90% confidence.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    Measurement of the Ds lifetime

    Get PDF
    We report precise measurement of the Ds meson lifetime. The data were taken by the SELEX experiment (E781) spectrometer using 600 GeV/c Sigma-, pi- and p beams. The measurement has been done using 918 reconstructed Ds. The lifetime of the Ds is measured to be 472.5 +- 17.2 +- 6.6 fs, using K*(892)0K+- and phi pi+- decay modes. The lifetime ratio of Ds to D0 is 1.145+-0.049.Comment: 5 pages, 2 figures submitted to Phys. Lett.
    corecore