3,466 research outputs found

    Bayes and health care research.

    Get PDF
    Bayes’ rule shows how one might rationally change one’s beliefs in the light of evidence. It is the foundation of a statistical method called Bayesianism. In health care research, Bayesianism has its advocates but the dominant statistical method is frequentism. There are at least two important philosophical differences between these methods. First, Bayesianism takes a subjectivist view of probability (i.e. that probability scores are statements of subjective belief, not objective fact) whilst frequentism takes an objectivist view. Second, Bayesianism is explicitly inductive (i.e. it shows how we may induce views about the world based on partial data from it) whereas frequentism is at least compatible with non-inductive views of scientific method, particularly the critical realism of Popper. Popper and others detail significant problems with induction. Frequentism’s apparent ability to avoid these, plus its ability to give a seemingly more scientific and objective take on probability, lies behind its philosophical appeal to health care researchers. However, there are also significant problems with frequentism, particularly its inability to assign probability scores to single events. Popper thus proposed an alternative objectivist view of probability, called propensity theory, which he allies to a theory of corroboration; but this too has significant problems, in particular, it may not successfully avoid induction. If this is so then Bayesianism might be philosophically the strongest of the statistical approaches. The article sets out a number of its philosophical and methodological attractions. Finally, it outlines a way in which critical realism and Bayesianism might work together. </p

    Distinct Quantum States Can Be Compatible with a Single State of Reality

    Get PDF
    Perhaps the quantum state represents information about reality, and not reality directly. Wave function collapse is then possibly no more mysterious than a Bayesian update of a probability distribution given new data. We consider models for quantum systems with measurement outcomes determined by an underlying physical state of the system but where several quantum states are consistent with a single underlying state---i.e., probability distributions for distinct quantum states overlap. Significantly, we demonstrate by example that additional assumptions are always necessary to rule out such a model.Comment: 5 pages, 2 figure

    Encouraging versatile thinking in algebra using the computer

    Get PDF
    In this article we formulate and analyse some of the obstacles to understanding the notion of a variable, and the use and meaning of algebraic notation, and report empirical evidence to support the hypothesis that an approach using the computer will be more successful in overcoming these obstacles. The computer approach is formulated within a wider framework ofversatile thinking in which global, holistic processing complements local, sequential processing. This is done through a combination of programming in BASIC, physical activities which simulate computer storage and manipulation of variables, and specific software which evaluates expressions in standard mathematical notation. The software is designed to enable the user to explore examples and non-examples of a concept, in this case equivalent and non-equivalent expressions. We call such a piece of software ageneric organizer because if offers examples and non-examples which may be seen not just in specific terms, but as typical, or generic, examples of the algebraic processes, assisting the pupil in the difficult task of abstracting the more general concept which they represent. Empirical evidence from several related studies shows that such an approach significantly improves the understanding of higher order concepts in algebra, and that any initial loss in manipulative facility through lack of practice is more than made up at a later stage

    A perspective on the landscape problem

    Full text link
    I discuss the historical roots of the landscape problem and propose criteria for its successful resolution. This provides a perspective to evaluate the possibility to solve it in several of the speculative cosmological scenarios under study including eternal inflation, cosmological natural selection and cyclic cosmologies.Comment: Invited contribution for a special issue of Foundations of Physics titled: Forty Years Of String Theory: Reflecting On the Foundations. 31 pages, no figure

    Quantum erasure within the Optical Stern-Gerlach Model

    Full text link
    In the optical Stern-Gerlach effect the two branches in which the incoming atomic packet splits up can display interference pattern outside the cavity when a field measurement is made which erases the which-way information on the quantum paths the system can follow. On the contrary, the mere possibility to acquire this information causes a decoherence effect which cancels out the interference pattern. A phase space analysis is also carried out to investigate on the negativity of the Wigner function and on the connection between its covariance matrix and the distinguishability of the quantum paths.Comment: 7 pages, 3 figure

    A Topos Foundation for Theories of Physics: I. Formal Languages for Physics

    Get PDF
    This paper is the first in a series whose goal is to develop a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. In this paper we discuss two different types of language that can be attached to a system, S. The first is a propositional language, PL(S); the second is a higher-order, typed language L(S). Both languages provide deductive systems with an intuitionistic logic. The reason for introducing PL(S) is that, as shown in paper II of the series, it is the easiest way of understanding, and expanding on, the earlier work on topos theory and quantum physics. However, the main thrust of our programme utilises the more powerful language L(S) and its representation in an appropriate topos.Comment: 36 pages, no figure

    Contracting for the unknown and the logic of innovation

    Get PDF
    This paper discusses the components of contracts adequatefor governing innovation, and their microfoundations in the logic of innovative decision processes. Drawing on models of discovery and design processes, distinctive logical features of innovative decision making are specified and connected to features of contracts that can sustain innovation processes and do not fail under radical uncertainty. It is argued that if new knowledge is to be generated under uncertainty and risk, 'relational contracts', as usually intended, are not enough and a more robust type of contracting is needed and it is actually often used: formal constitutional contracts that associate resources, leave their uses rationally unspecified, but exhaustively specify the assignment of residual decision rights and other property rights, and the decision rules to be followed in governance. The argument is supported by an analysis of a large international database on the governance of multi-party projects in discovery-intensive and design-intensive industries

    The "Unromantic Pictures" of Quantum Theory

    Get PDF
    I am concerned with two views of quantum mechanics that John S. Bell called ``unromantic'': spontaneous wave function collapse and Bohmian mechanics. I discuss some of their merits and report about recent progress concerning extensions to quantum field theory and relativity. In the last section, I speculate about an extension of Bohmian mechanics to quantum gravity.Comment: 37 pages LaTeX, no figures; written for special volume of J. Phys. A in honor of G.C. Ghirard

    Is the quantum world composed of propensitons?

    Get PDF
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein almost put forward this version of quantum theory in 1916/17 in his papers on spontaneous and induced radiative transitions, but retreated from doing so because he disliked the probabilistic character of the idea. Subsequently, the idea was overlooked because debates about quantum theory polarised into the Bohr/Heisenberg camp, which argued for the abandonment of realism and determinism, and the Einstein/Schrödinger camp, which argued for the retention of realism and determinism, no one, as a result, pursuing the most obvious option of retaining realism but abandoning determinism. It is this third, overlooked option that leads to PQT. PQT has implications for quantum field theory, the standard model, string theory, and cosmology. The really important point, however, is that it is experimentally testable. I indicate two experiments in principle capable of deciding between PQT and OQT
    • 

    corecore