10,823 research outputs found

    Inflation in a two 3-form fields scenario

    Full text link
    A setting constituted by N\mathbb{N} 3-form fields, without any direct interaction between them, minimally coupled to gravity, is introduced in this paper as a framework to study the early evolution of the universe. We focus particularly on the two 3-forms case. An inflationary scenario is found, emerging from the coupling to gravity. More concretely, the fields coupled in this manner exhibit a complex interaction, mediated by the time derivative of the Hubble parameter. Our investigation is supported by means of a suitable choice of potentials, employing numerical methods and analytical approximations. In more detail, the oscillations on the small field limit become correlated, and one field is intertwined with the other. In this type of solution, a varying sound speed is present, together with the generation of isocurvature perturbations. The mentioned features allow to consider an interesting model, to test against observation. It is subsequently shown how our results are consistent with current CMB data (viz.Planck and BICEP2).Comment: Version accepted in JCAP. 22 pages, 12 figures, new refs adde

    Structure Effects on Coulomb Dissociation of 8^8B

    Get PDF
    Coulomb Dissociation provides an alternative method for determining the radiative capture cross sections at astrophysically relevant low relative energies. For the breakup of 8^8B on 58^{58}Ni, we calculate the total Coulomb Dissociation cross section and the angular distribution for E1, E2 and M1. Our calculations are performed first within the standard first order semiclassical theory of Coulomb Excitation, including the correct three body kinematics, and later including the projectile-target nuclear interactions.Comment: 6 pages, proceedings from International Workshop on RNB, Puri, India, January 1998 - to be published in J. Phys.

    The effects of multiple repairs on Inconel 718 weld mechanical properties

    Get PDF
    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal

    On the particle spectrum and the conformal window

    Get PDF
    We study the SU(3) gauge theory with twelve flavours of fermions in the fundamental representation as a prototype of non-Abelian gauge theories inside the conformal window. Guided by the pattern of underlying symmetries, chiral and conformal, we analyze the two-point functions theoretically and on the lattice, and determine the finite size scaling and the infinite volume fermion mass dependence of the would-be hadron masses. We show that the spectrum in the Coulomb phase of the system can be described in the context of a universal scaling analysis and we provide the nonperturbative determination of the fermion mass anomalous dimension gamma*=0.235(46) at the infrared fixed point. We comment on the agreement with the four-loop perturbative prediction for this quantity and we provide a unified description of all existing lattice results for the spectrum of this system, them being in the Coulomb phase or the asymptotically free phase. Our results corroborate the view that the fixed point we are studying is not associated to a physical singularity along the bare coupling line and estimates of physical observables can be attempted on either side of the fixed point. Finally, we observe the restoration of the U(1) axial symmetry in the two-point functions.Comment: 40 pages, 22 figure

    One,Two,Zero: Scales of Strong Interactions

    Full text link
    We discuss our results on QCD with a number of fundamental fermions ranging from zero to sixteen. These theories exhibit a wide array of fascinating phenomena which have been under close scrutiny, especially in recent years, first and foremost is the approach to conformality. To keep this review focused, we have chosen scale generation, or lack thereof as a guiding theme, however the discussion will be set in the general framework of the analysis of the phases and phase transitions of strong interactions at zero and nonzero temperature.Comment: 15 pages, prepared for IJMPA Special Issue 'Recent Nonperturbative Developments in QCD-like Theories

    Chiral symmetry restoration in QCD with many flavours

    Full text link
    We discuss the phases of QCD in the parameter space spanned by the number of light flavours and the temperature with respect to the realisation of chiral and conformal symmetries. The intriguing interplay of these symmetries is best studied by means of lattice simulations, and some selected results from our recent work are presented here.Comment: 10 pages, proceedings of the 9th International Workshop on Critical Point and Onset of Deconfinement, 17-21 November, 2014, ZiF, Bielefeld, German

    Peripherality of breakup reactions

    Full text link
    The sensitivity of elastic breakup to the interior of the projectile wave function is analyzed. Breakup calculations of loosely bound nuclei (8B and 11Be) are performed with two different descriptions of the projectile. The descriptions differ strongly in the interior of the wave function, but exhibit identical asymptotic properties, namely the same asymptotic normalization coefficient, and phase shifts. Breakup calculations are performed at intermediate energies (40-70 MeV/nucleon) on lead and carbon targets as well as at low energy (26 MeV) on a nickel target. No dependence on the projectile description is observed. This result confirms that breakup reactions are peripheral in the sense that they probe only the external part of the wave function. These measurements are thus not directly sensitive to the total normalization of the wave function, i.e. spectroscopic factor.Comment: Reviewed version accepted for publication in Phys. Rev. C; 1 new section (Sec. III E), 2 new figures (Figs. 3 and 5

    Multi-alternative decision-making with non-stationary inputs

    Get PDF
    One of the most widely implemented models for multialternative decision-making is the multihypothesis sequential probability ratio test (MSPRT). It is asymptotically optimal, straightforward to implement, and has found application in modelling biological decision-making. However, the MSPRT is limited in application to discrete (‘trial-based’), non-timevarying scenarios. By contrast, real world situations will be continuous and entail stimulus non-stationarity. In these circumstances, decision-making mechanisms (like the MSPRT) which work by accumulating evidence, must be able to discard outdated evidence which becomes progressively irrelevant. To address this issue, we introduce a new decision mechanism by augmenting the MSPRT with a rectangular integration window and a transparent decision boundary. This allows selection and de-selection of options as their evidence changes dynamically. Performance was enhanced by adapting the window size to problem difficulty. Further, we present an alternative windowing method which exponentially decays evidence and does not significantly degrade performance, while greatly reducing the memory resources necessary. The methods presented have proven successful at allowing for the MSPRT algorithm to function in a non-stationary environment

    Nuclear reaction studies of unstable nuclei using relativistic mean field formalisms in conjunction with Glauber model

    Full text link
    We study nuclear reaction cross-sections for stable and unstable projectiles and targets within Glauber model, using densities obtained from various relativistic mean field formalisms. The calculated cross-sections are compared with the experimental data in some specific cases. We also evaluate the differential scattering cross-sections at several incident energies, and observe that the results found from various densities are similar at smaller scattering angles, whereas a systematic deviation is noticed at large angles. In general, these results agree fairly well with the experimental data.Comment: 9 pages, 7 figures, submitted to PR

    Scaling Behavior of Driven Interfaces Above the Depinning Transition

    Full text link
    We study the depinning transition for models representative of each of the two universality classes of interface roughening with quenched disorder. For one of the universality classes, the roughness exponent changes value at the transition, while the dynamical exponent remains unchanged. We also find that the prefactor of the width scales with the driving force. We propose several scaling relations connecting the values of the exponents on both sides of the transition, and discuss some experimental results in light of these findings.Comment: Revtex 3.0, 4 pages in PRL format + 5 figures (available at ftp://jhilad.bu.edu/pub/abbhhss/ma-figures.tar.Z ) submitted to Phys Rev Let
    corecore