159 research outputs found

    Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis

    Get PDF
    Main conclusionsLow temperature decreases PSII damage in vivo, confirming earlier in vitro results. Susceptibility to photoinhibition differs among Arabidopsis accessions and moderately decreases after 2-week cold-treatment. Flavonols may alleviate photoinhibition.AbstractThe rate of light-induced inactivation of photosystem II (PSII) at 22 and 4 degrees C was measured from natural accessions of Arabidopsis thaliana (Rschew, Tenela, Columbia-0, Coimbra) grown under optimal conditions (21 degrees C), and at 4 degrees C from plants shifted to 4 degrees C for 2 weeks. Measurements were done in the absence and presence of lincomycin (to block repair). PSII activity was assayed with the chlorophyll a fluorescence parameter F-v/F-m and with light-saturated rate of oxygen evolution using a quinone acceptor. When grown at 21 degrees C, Rschew was the most tolerant to photoinhibition and Coimbra the least. Damage to PSII, judged from fitting the decrease in oxygen evolution or F-v/F-m to a first-order equation, proceeded more slowly or equally at 4 than at 22 degrees C. The 2-week cold-treatment decreased photoinhibition at 4 degrees C consistently in Columbia-0 and Coimbra, whereas in Rschew and Tenela the results depended on the method used to assay photoinhibition. The rate of singlet oxygen production by isolated thylakoid membranes, measured with histidine, stayed the same or slightly decreased with decreasing temperature. On the other hand, measurements of singlet oxygen from leaves with Singlet Oxygen Sensor Green suggest that in vivo more singlet oxygen is produced at 4 degrees C. Under high light, the PSII electron acceptor Q(A) was more reduced at 4 than at 22 degrees C. Singlet oxygen production, in vitro or in vivo, did not decrease due to the cold-treatment. Epidermal flavonols increased during the cold-treatment and, in Columbia-0 and Coimbra, the amount correlated with photoinhibition tolerance

    Evolving neural network optimization of cholesteryl ester separation by reversed-phase HPLC

    Get PDF
    Cholesteryl esters have antimicrobial activity and likely contribute to the innate immunity system. Improved separation techniques are needed to characterize these compounds. In this study, optimization of the reversed-phase high-performance liquid chromatography separation of six analyte standards (four cholesteryl esters plus cholesterol and tri-palmitin) was accomplished by modeling with an artificial neural network–genetic algorithm (ANN-GA) approach. A fractional factorial design was employed to examine the significance of four experimental factors: organic component in the mobile phase (ethanol and methanol), column temperature, and flow rate. Three separation parameters were then merged into geometric means using Derringer’s desirability function and used as input sources for model training and testing. The use of genetic operators proved valuable for the determination of an effective neural network structure. Implementation of the optimized method resulted in complete separation of all six analytes, including the resolution of two previously co-eluting peaks. Model validation was performed with experimental responses in good agreement with model-predicted responses. Improved separation was also realized in a complex biological fluid, human milk. Thus, the first known use of ANN-GA modeling for improving the chromatographic separation of cholesteryl esters in biological fluids is presented and will likely prove valuable for future investigators involved in studying complex biological samples

    Pregnane X Receptor and Yin Yang 1 Contribute to the Differential Tissue Expression and Induction of CYP3A5 and CYP3A4

    Get PDF
    The hepato-intestinal induction of the detoxifying enzymes CYP3A4 and CYP3A5 by the xenosensing pregnane X receptor (PXR) constitutes a key adaptive response to oral drugs and dietary xenobiotics. In contrast to CYP3A4, CYP3A5 is additionally expressed in several, mostly steroidogenic organs, which creates potential for induction-driven disturbances of the steroid homeostasis. Using cell lines and mice transgenic for a CYP3A5 promoter we demonstrate that the CYP3A5 expression in these organs is non-inducible and independent from PXR. Instead, it is enabled by the loss of a suppressing yin yang 1 (YY1)-binding site from the CYP3A5 promoter which occurred in haplorrhine primates. This YY1 site is conserved in CYP3A4, but its inhibitory effect can be offset by PXR acting on response elements such as XREM. Taken together, the loss of YY1 binding site from promoters of the CYP3A5 gene lineage during primate evolution may have enabled the utilization of CYP3A5 both in the adaptive hepato-intestinal response to xenobiotics and as a constitutively expressed gene in other organs. Our results thus constitute a first description of uncoupling induction from constitutive expression for a major detoxifying enzyme. They also suggest an explanation for the considerable tissue expression differences between CYP3A5 and CYP3A4

    Increased expression of phosphorrylated NBS1, a key molecule of the DNA damage response machinery, is an adverse prognostic factor in patients with de novo myelodysplastic syndromes

    Get PDF
    The expression of activated forms of key proteins of the DNA damage response machinery (pNBS1, pATM and γH2AX) was assessed by means of immunohistochemistry in bone marrow biopsies of 74 patients with de novo myelodysplastic syndromes (MDS) and compared with 15 cases of de novo acute myeloid leukemia (AML) and 20 with reactive bone marrow histology. Expression levels were significantly increased in both MDS and AML, compared to controls, being higher in high-risk than in low-risk MDS. Increased pNBS1 and γH2AX expression possessed a significant negative prognostic impact for overall survival in MDS patients, whereas pNBS1 was an independent marker of poor prognosis

    Effect of X-Ray Attenuation of Arterial Obstructions on Intravenous Thrombolysis and Outcome after Ischemic Stroke

    Get PDF
    <div><p>Objective</p><p>To assess whether the x-ray attenuation of intra-arterial obstruction measured on non-contrast CT in ischemic stroke can predict response to thrombolysis and subsequent functional outcome.</p><p>Methods</p><p>The Third International Stroke Trial (IST-3) was a multicenter randomized-controlled trial of intravenous thrombolysis (rt-PA) given within six hours of ischemic stroke. Ethical approval and informed consent were obtained. In a subgroup of 109 IST-3 patients (38 men, median age 82 years), a single reader, masked to all clinical and other imaging data, manually measured x-ray attenuation (Hounsfield Units, HU) on non-contrast CT at the location of angiographically-proven intra-arterial obstructions, pre-randomization and at 24–48 hour follow-up. We calculated change in attenuation between scans. We assessed the impact of pre-randomization arterial obstruction attenuation on six-month functional outcome.</p><p>Results</p><p>Most arterial obstructions (64/109, 59%) were hyperattenuating (mean 51.0 HU). Compared with control, treatment with rt-PA was associated with a greater, but non-significant, reduction in obstruction attenuation at follow-up (-8.0 HU versus -1.4 HU in patients allocated control, p = 0.117). In multivariable ordinal regression analysis controlled for patient age, stroke severity, location and extent of obstruction, time from stroke onset to baseline scan and rt-PA treatment allocation, the attenuation of pre-randomization arterial obstruction was not independently associated with six-month outcome (odds ratio = 0.99, 95% confidence interval = 0.94–1.03, p = 0.516).</p><p>Conclusions</p><p>In ischemic stroke, the x-ray attenuation of the arterial obstruction may decline more rapidly from baseline to 24–48 hours following treatment with thrombolysis but we found no evidence that baseline arterial obstruction attenuation predicts six-month outcome.</p></div

    Target protection as a key antibiotic resistance mechanism

    Get PDF
    Antibiotic resistance is mediated through several distinct mechanisms, most of which are relatively well understood and the clinical importance of which has long been recognized. Until very recently, neither of these statements was readily applicable to the class of resistance mechanism known as target protection, a phenomenon whereby a resistance protein physically associates with an antibiotic target to rescue it from antibiotic-mediated inhibition. In this Review, we summarize recent progress in understanding the nature and importance of target protection. In particular, we describe the molecular basis of the known target protection systems, emphasizing that target protection does not involve a single, uniform mechanism but is instead brought about in several mechanistically distinct ways
    • …
    corecore