45 research outputs found

    Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    Get PDF
    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes.ImportanceDecades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS) species, we demonstrate that fungi can mediate the ecological distributions of closely related bacterial species. One of the Staphylococcus species studied, S. saprophyticus, is a common cause of urinary tract infections. By identifying processes that control the abundance of undesirable CNS species, cheese producers will have more precise control on the safety and quality of their products. More generally, Staphylococcus species frequently co-occur with fungi in mammalian microbiomes, and similar bacterium-fungus interactions may structure bacterial diversity in these systems

    Artificial dry surface biofilm (DSB) models for testing the efficacy of cleaning and disinfection

    Get PDF
    Dry surface biofilms (DSB) harbouring pathogens are widespread in healthcare settings, difficult to detect and resistant to cleaning and disinfection interventions. Here, we describe a practical test protocol to palliate the lack of standard efficacy test methods for DSB. Staphylococcus aureus DSB were produced over a 12‐day period, grown with or without the presence of organic matter, and their composition and viability were evaluated. Disinfectant treatment was conducted with a modified ASTM2967‐15 test and reduction in viability, transferability, and biofilm regrowth post treatment were measured. Dry surface biofilms produced over a 12‐day period had a similar carbohydrates, proteins and DNA content, regardless the presence or absence of organic matter. The combination of sodium hypochlorite (1,000 ppm) and a microfiber cloth was only effective against DSB in the absence of organic load. With the increasing concerns of the uncontrolled presence of DSB in healthcare settings, the development of effective interventions is paramount. We propose that our DSB model in the presence of organic load is appropriate for the testing of biocidal products, while the use of three parameters, log10 reduction, transferability and regrowth, provides an accurate and practical measurement of product efficacy

    It's a trap! The development of a versatile drain biofilm model and its susceptibility to disinfection

    Get PDF
    Background Pathogens in drain biofilms pose a significant risk for hospital-acquired infection. However, the evidence of product effectiveness in controlling drain biofilm and pathogen dissemination are scarce. A novel in-vitro biofilm model was developed to address the need for a robust, reproduceable and simple testing methodology for disinfection efficacy against a complex drain biofilm. Methods Identical complex drain biofilms were established simultaneously over 8 days, mimicking a sink trap. Reproducibility of their composition was confirmed by next-generation sequencing. The efficacy of sodium hypochlorite 1000 ppm (NaOCl), sodium dichloroisocyanurate 1000 ppm (NaDCC), non-ionic surfactant (NIS) and peracetic acid 4000 ppm (PAA) was explored, simulating normal sink usage conditions. Bacterial viability and recovery following a series of 15-min treatments were measured in three distinct parts of the drain. Results The drain biofilm consisted of 119 mixed species of Gram-positive and -negative bacteria. NaOCl produced a >4 log10 reduction in viability in the drain front section alone, while PAA achieved a >4 log10 reduction in viability in all of the drain sections following three 15-min doses and prevented biofilm regrowth for >4 days. NIS and NaDCC failed to control the biofilm in any drain sections. Conclusions Drains are one source of microbial pathogens in healthcare settings. Microbial biofilms are notoriously difficult to eradicate with conventional chemical biocidal products. The development of this reproducible in-vitro drain biofilm model enabled understanding of the impact of biocidal products on biofilm spatial composition and viability in different parts of the drain. Keyword

    Design rules for the self-assembly of a protein crystal

    Full text link
    Theories of protein crystallization based on spheres that form close-packed crystals predict optimal assembly within a `slot' of second virial coefficients and enhanced assembly near the metastable liquid-vapor critical point. However, most protein crystals are open structures stabilized by anisotropic interactions. Here, we use theory and simulation to show that assembly of one such structure is not predicted by the second virial coefficient or enhanced by the critical point. Instead, good assembly requires that the thermodynamic driving force be on the order of the thermal energy and that interactions be made as nonspecific as possible without promoting liquid-vapor phase separation.Comment: 5 pages, 4 figure

    Divergence in transcriptional and regulatory responses to mating in male and female fruitflies

    Get PDF
    Mating induces extensive physiological, biochemical and behavioural changes in female animals of many taxa. In contrast, the overall phenotypic and transcriptomic consequences of mating for males, hence how they might differ from those of females, are poorly described. Post mating responses in each sex are rapidly initiated, predicting the existence of regulatory mechanisms in addition to transcriptional responses involving de novo gene expression. That post mating responses appear different for each sex also predicts that the genome-wide signatures of mating should show evidence of sex-specific specialisation. In this study, we used high resolution RNA sequencing to provide the first direct comparisons of the transcriptomic responses of male and female Drosophila to mating, and the first comparison of mating-responsive miRNAs in both sexes in any species. As predicted, the results revealed the existence of sex- and body part-specific mRNA and miRNA expression profiles. More genes were differentially expressed in the female head-thorax than the abdomen following mating, whereas the opposite was true in males. Indeed, the transcriptional profile of male head-thorax tissue was largely unaffected by mating, and no differentially expressed genes were detected at the most stringent significance threshold. A subset of ribosomal genes in females were differentially expressed in both body parts, but in opposite directions, consistent with the existence of body part-specific resource allocation switching. Novel, mating-responsive miRNAs in each sex were also identified, and a miRNA-mRNA interactions analysis revealed putative targets among mating-responsive genes. We show that the structure of genome-wide responses by each sex to mating is strongly divergent, and provide new insights into how shared genomes can achieve characteristic distinctiveness

    Biogenesis and functions of bacterial S-layers.

    Get PDF
    The outer surface of many archaea and bacteria is coated with a proteinaceous surface layer (known as an S-layer), which is formed by the self-assembly of monomeric proteins into a regularly spaced, two-dimensional array. Bacteria possess dedicated pathways for the secretion and anchoring of the S-layer to the cell wall, and some Gram-positive species have large S-layer-associated gene families. S-layers have important roles in growth and survival, and their many functions include the maintenance of cell integrity, enzyme display and, in pathogens and commensals, interaction with the host and its immune system. In this Review, we discuss our current knowledge of S-layer and related proteins, including their structures, mechanisms of secretion and anchoring and their diverse functions

    Pragmatic financialisation: the role of the Japanese Post Office

    Get PDF
    The Japanese Post Office, one of the world’s largest financial institutions, was finally privatised in 2015, marking an appropriate time to examine financialisation in Japan. Literature on financialisation and changes in Japanese capitalism assumes convergence on Anglo-American capitalism with a diminishing of state power. The main argument of this paper is that financialisation is instead a more contingent process. This is put forth through an examination of how this process has been mediated by the Japanese state through the workings of the Japanese Post Office. The state has frequently shaped the direction of financialisation by intervening in the routing of household funds via the postal savings system in order to achieve its objectives in different circumstances, particularly evident in the protracted and contested nature of the post bank’s privatisation. Financialisation is thus not preordained; instead its path is hewn by crisis, catastrophe, demographics and the agency of domestic social actors

    Biotic Interactions Shape the Ecological Distributions of Staphylococcus

    No full text
    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes
    corecore