86 research outputs found

    Quantitative Analysis of Situation Awareness (QASA): modelling and measuring situation awareness using signal detection theory

    Get PDF
    This paper presents a model of situation awareness (SA) that emphasises that SA is necessarily built using a subset of available information. A technique (Quantitative Analysis of Situation Awareness – QASA), based around signal detection theory, has been developed from this model that provides separate measures of actual SA (ASA) and perceived SA (PSA), together with a feature unique to QASA, a measure of bias (information acceptance). These measures allow the exploration of the relationship between actual SA, perceived SA and information acceptance. QASA can also be used for the measurement of dynamic ASA, PSA and bias. Example studies are presented and full details of the implementation of the QASA technique are provided

    Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY 2010 Laboratory-Scale Experiments

    Get PDF
    This investigation is focused on refining an in situ technology for vadose zone remediation of uranium by the addition of ammonia (NH3) gas. Objectives are to: a) refine the technique of ammonia gas treatment of low water content sediments to minimize uranium mobility by changing uranium surface phases (or coat surface phases), b) identify the geochemical changes in uranium surface phases during ammonia gas treatment, c) identify broader geochemical changes that occur in sediment during ammonia gas treatment, and d) predict and test injection of ammonia gas for intermediate-scale systems to identify process interactions that occur at a larger scale and could impact field scale implementation.Overall, NH3 gas treatment of low-water content sediments appears quite effective at decreasing aqueous, adsorbed uranium concentrations. The NH3 gas treatment is also fairly effective for decreasing the mobility of U-carbonate coprecipitates, but shows mixed success for U present in Na-boltwoodite. There are some changes in U-carbonate surface phases that were identified by surface phase analysis, but no changes observed for Na-boltwoodite. It is likely that dissolution of sediment minerals (predominantly montmorillonite, muscovite, kaolinite) under the alkaline conditions created and subsequent precipitation as the pH returns to natural conditions coat some of the uranium surface phases, although a greater understanding of these processes is needed to predict the long term impact on uranium mobility. Injection of NH3 gas into sediments at low water content (1% to 16% water content) can effectively treat a large area without water addition, so there is little uranium mobilization (i.e., transport over cm or larger scale) during the injection phase

    Immobilization and Limited Reoxidation of Technetium-99 by Fe(II)-Goethite

    Get PDF
    This report summarizes the methodology used to test the sequestration of technetium-99 present in both deionized water and simulated Hanford Tank Waste Treatment and Immobilization Plant waste solutions

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF
    corecore