299 research outputs found

    Summer-restricted migration of green turtles Chelonia mydas to a temperate habitat of the northwest Pacific Ocean

    Get PDF
    The foraging habitats of green turtles Chelonia mydas range from tropical to temperate areas. Previous studies have generally been biased toward tropical and sub-tropical areas; hence, available data do not accurately describe the species' foraging activity in temperate areas. To reveal seasonal patterns of habitat use in temperate areas, we conducted a by-catch survey, a mark-recapture study, and satellite tracking of green turtles along the Sanriku Coast, a temperate zone in the northwest Pacific Ocean. From July through November of 2005 to 2014, 78 green turtles were captured during a period of relatively high water temperatures (16 to 24Β°C). Straight carapace length (SCL) ranged from 36.8 to 85.6 cm (average: 49.4 Β± 11.4 cm; n = 78), indicating that most of the turtles were juveniles. In the mark-recapture study, 14 of 72 tagged turtles were recaptured 5 to 426 d after release, 12 of which were recaptured south of the release point. Based on satellite tracking data, 3 turtles travelled more than 500 km to reach southern habitats, where water temperature was warmer (13 to 25Β°C) than along the Sanriku Coast (4 to 22Β°C). Our results revealed that the Sanriku Coast is a seasonally restricted habitat for juvenile green turtles, which migrate to southern habitats in winter, and that turtles in temperate areas migrated longer than those in tropical and sub-tropical areas. This is the first report of seasonal migration of juvenile green turtles to a temperate habitat in the northern Pacific Ocean.Publisher PDFPeer reviewe

    Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A

    Get PDF
    Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1+/CXCR4+/VE-cadherinβˆ’ (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs

    Efficient and Scalable Purification of Cardiomyocytes from Human Embryonic and Induced Pluripotent Stem Cells by VCAM1 Surface Expression

    Get PDF
    RATIONALE: Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. METHOD AND RESULT: We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30-70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7-8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95-98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5-10Γ—10(5) VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. CONCLUSION: We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy

    Conceptualisation, Development, Fabrication and In Vivo Validation of a Novel Disintegration Tester for Orally Disintegrating Tablets

    Get PDF
    Disintegration time is the key critical quality attribute for a tablet classed as an Orally Disintegrating Tablet (ODT). The currently accepted in vitro testing regimen for ODTs is the standard United States Pharmacopeia (USP) test for disintegration of immediate release tablets, which requires a large volume along with repeated submergence of the dosage form within the disintegration medium. The aim of this study was to develop an in vivo relevant ODT disintegration test that mimicked the environment of the oral cavity, including lower volume of disintegration medium, with relevant temperature and humidity that represent the conditions of the mouth. The results showed that the newly developed Aston test was able to differentiate between different ODTs with small disintegration time windows, as well as between immediate release tablets and ODTs. The Aston test provided higher correlations between ODT properties and disintegration time compared to the USP test method and most significantly, resulted in a linear in vitro/in vivo correlation (IVIVC) (R 2 value of 0.98) compared with a "hockey stick" profile of the USP test. This study therefore concluded that the newly developed Aston test is an accurate, repeatable, relevant and robust test method for assessing ODT disintegration time which will provide the pharmaceutical industry and regulatory authorities across the world with a pragmatic ODT testing regime

    Intramyocardial Transplantation of Undifferentiated Rat Induced Pluripotent Stem Cells Causes Tumorigenesis in the Heart

    Get PDF
    BACKGROUND: Induced pluripotent stem cells (iPSCs) are a novel candidate for use in cardiac stem cell therapy. However, their intrinsic tumorigenicity requires further investigation prior to use in a clinical setting. In this study we investigated whether undifferentiated iPSCs are tumorigenic after intramyocardial transplantation into immunocompetent allogeneic recipients. METHODOLOGY/PRINCIPAL FINDINGS: We transplanted 2 Γ— 10(4), 2 Γ— 10(5), or 2 Γ— 10(6) cells from the established rat iPSC line M13 intramyocardially into intact or infarcted hearts of immunocompetent allogeneic rats. Transplant duration was 2, 4, or 6 weeks. Histological examination with hematoxylin-eosin staining confirmed that undifferentiated rat iPSCs could generate heterogeneous tumors in both intracardiac and extracardiac sites. Furthermore, tumor incidence was independent of cell dose, transplant duration, and the presence or absence of myocardial infarction. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that allogeneic iPSC transplantation in the heart will likely result in in situ tumorigenesis, and that cells leaked from the beating heart are a potential source of tumor spread, underscoring the importance of evaluating the safety of future iPSC therapy for cardiac disease

    Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases

    Get PDF
    The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment

    Nuclear Reprogramming Strategy Modulates Differentiation Potential of Induced Pluripotent Stem Cells

    Get PDF
    Bioengineered by ectopic expression of stemness factors, induced pluripotent stem (iPS) cells demonstrate embryonic stem cell-like properties and offer a unique platform for derivation of autologous pluripotent cells from somatic tissue sources. In the process of nuclear reprogramming, somatic tissues are converted to a pluripotent ground state, thus unlocking an unlimited potential to expand progenitor pools. Molecular dissection of nuclear reprogramming suggests that a residual memory derived from the original parental source, along with the remnants of the reprogramming process itself, leads to a biased potential of the bioengineered progeny to differentiate into target tissues such as cardiac cytotypes. In this way, iPS cells that fulfill pluripotency criteria may display heterogeneous profiles for lineage specification. Small molecule-based strategies have been identified that modulate the epigenetic state of reprogrammed cells and are optimized to erase the residual memory and homogenize the differentiation potential of iPS cells derived from distinct backgrounds. Here, we describe the salient components of the reprogramming process and their effect on the downstream differentiation capacity of the iPS populations in the context of cardiovascular regenerative applications

    Comparative Angiogenic Activities of Induced Pluripotent Stem Cells Derived from Young and Old Mice

    Get PDF
    Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone marrow (old) were used. Fetal liver kinase-1 positive (Flk-1+) cells, as a vascular progenitor marker, were induced after 3 to 4 days of culture from iPS cells derived from young and old mice. These Flk-1+ cells were sorted and shown to differentiate into VE-cadherin+ endothelial cells and Ξ±-SMA+ smooth muscle cells. Tube-like formation was also successfully induced in both young and old murine Flk-1+ cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1+ cells were directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly accelerated in mice transplanted with Flk-1+ cells derived from iPS cells from either young or old mice, as compared to control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups of ischemic mice injected with iPS cell-derived Flk-1+ cells from young or old mice. Transplantation of Flk-1+ cells from both young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to controls. iPS cell-derived Flk-1+ cells differentiated into vascular progenitor cells, and regulated angiogenic vascular responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging

    Constitutively elevated levels of SOCS1 suppress innate responses in DF-1 immortalised chicken fibroblast cells.

    Get PDF
    The spontaneously immortalised DF-1 cell line is rapidly replacing its progenitor primary chicken embryo fibroblasts (CEFs) for studies on avian viruses such as avian influenza but no comprehensive study has as yet been reported comparing their innate immunity phenotypes. We conducted microarray analyses of DF-1 and CEFs, under both normal and stimulated conditions using chicken interferon-Ξ± (chIFN-Ξ±) and the attenuated infectious bursal disease virus vaccine strain PBG98. We found that DF-1 have an attenuated innate response compared to CEFs. Basal expression levels of Suppressor of Cytokine Signalling 1 (chSOCS1), a negative regulator of cytokine signalling in mammals, are 16-fold higher in DF-1 than in CEFs. The chSOCS1 β€œSOCS box” domain (which in mammals, interacts with an E3 ubiquitin ligase complex) is not essential for the inhibition of cytokine-induced JAK/STAT signalling activation in DF-1. Overexpression of SOCS1 in chIFN-Ξ±-stimulated DF-1 led to a relative decrease in expression of interferon-stimulated genes (ISGs; MX1 and IFIT5) and increased viral yield in response to PBG98 infection. Conversely, knockdown of SOCS1 enhanced induction of ISGs and reduced viral yield in chIFN-Ξ±-stimulated DF-1. Consequently, SOCS1 reduces induction of the IFN signalling pathway in chicken cells and can potentiate virus replication
    • …
    corecore