138 research outputs found

    Asymmetric Thermal Lineshape Broadening in a Gapped 3-Dimensional Antiferromagnet - Evidence for Strong Correlations at Finite Temperature

    Full text link
    It is widely believed that magnetic excitations become increasingly incoherent as temperature is raised due to random collisions which limit their lifetime. This picture is based on spin-wave calculations for gapless magnets in 2 and 3 dimensions and is observed experimentally as a symmetric Lorentzian broadening in energy. Here, we investigate a three-dimensional dimer antiferromagnet and find unexpectedly that the broadening is asymmetric - indicating that far from thermal decoherence, the excitations behave collectively like a strongly correlated gas. This result suggests that a temperature activated coherent state of quasi-particles is not confined to special cases like the highly dimerized spin-1/2 chain but is found generally in dimerized antiferromagnets of all dimensionalities and perhaps gapped magnets in general

    Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates

    Get PDF
    We present a soft x-ray angle-resolved photoemission spectroscopy study of the overdoped high-temperature superconductors La2−x_{2-x}Srx_xCuO4_4 and La1.8−x_{1.8-x}Eu0.2_{0.2}Srx_xCuO4_4. In-plane and out-of-plane components of the Fermi surface are mapped by varying the photoemission angle and the incident photon energy. No kzk_z dispersion is observed along the nodal direction, whereas a significant antinodal kzk_z dispersion is identified. Based on a tight-binding parametrization, we discuss the implications for the density of states near the van-Hove singularity. Our results suggest that the large electronic specific heat found in overdoped La2−x_{2-x}Srx_xCuO4_4 can not be assigned to the van-Hove singularity alone. We therefore propose quantum criticality induced by a collapsing pseudogap phase as a plausible explanation for observed enhancement of electronic specific heat

    Uniqueness of the asymptotic AdS3 geometry

    Get PDF
    We explicitly show that in (2+1) dimensions the general solution of the Einstein equations with negative cosmological constant on a neigbourhood of timelike spatial infinity can be obtained from BTZ metrics by coordinate transformations corresponding geometrically to deformations of their spatial infinity surface. Thus, whatever the topology and geometry of the bulk, the metric on the timelike extremities is BTZ.Comment: LaTeX, 8 pages, no figures, version that will appear in Class. Quant. Gra

    Magnetism and Ion Diffusion in Honeycomb Layered Oxide K2_2Ni2_2TeO6_6: First Time Study by Muon Spin Rotation & Neutron Scattering

    Get PDF
    In the quest of finding novel and efficient batteries, a great interest has raised in K-based honeycomb layer oxide materials both for their fundamental properties and potential applications. A key issue in the realization of efficient batteries based on such compounds, is to understand the K-ion diffusion mechanism. However, investigation of potassium-ion (K+^+) dynamics in materials using magneto-spin properties has so far been challenging, due to its inherently weak nuclear magnetic moment, in contrast to other alkali ions such as lithium and sodium. Spin-polarised muons, having a high gyromagnetic ratio, make the muon spin rotation and relaxation (μ\mu+SR) technique ideal for probing ions dynamics in weak magneto-spin moment materials. Here we report the magnetic properties and K+ dynamics in honeycomb layered oxide material of the K2_2Ni2_2TeO6_6 using μ\mu+SR measurements. Our low-temperature μ\mu+SR results together with, with complementary magnetic susceptibility, find an antiferromagnetic transition at 26 K. Further μ\mu+SR studies performed at higher temperatures reveal that potassium ions (K+^+) become mobile above 250 K and the activation energy for the diffusion process is Ea = 121(13) meV. This is the first time that K+ dynamics in potassium-based battery materials has been measured using μ\mu+SR. Finally our results also indicate an interesting possibility that K-ion self diffusion occurs predominantly at the surface of the powder particles. This opens future possibilities for improving ion diffusion and device performance using nano-structuring.Comment: 12 pages, 12 figure

    Quantum Symmetries and Marginal Deformations

    Full text link
    We study the symmetries of the N=1 exactly marginal deformations of N=4 Super Yang-Mills theory. For generic values of the parameters, these deformations are known to break the SU(3) part of the R-symmetry group down to a discrete subgroup. However, a closer look from the perspective of quantum groups reveals that the Lagrangian is in fact invariant under a certain Hopf algebra which is a non-standard quantum deformation of the algebra of functions on SU(3). Our discussion is motivated by the desire to better understand why these theories have significant differences from N=4 SYM regarding the planar integrability (or rather lack thereof) of the spin chains encoding their spectrum. However, our construction works at the level of the classical Lagrangian, without relying on the language of spin chains. Our approach might eventually provide a better understanding of the finiteness properties of these theories as well as help in the construction of their AdS/CFT duals.Comment: 1+40 pages. v2: minor clarifications and references added. v3: Added an appendix, fixed minor typo

    The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment.

    Get PDF
    Understanding how differentiation programs originate from the gene-expression 'landscape' of hematopoietic stem cells (HSCs) is crucial for the development of new clinical therapies. We mapped the transcriptional dynamics underlying the first steps of commitment by tracking transcriptome changes in human HSCs and eight early progenitor populations. We found that transcriptional programs were extensively shared, extended across lineage-potential boundaries and were not strictly lineage affiliated. Elements of stem, lymphoid and myeloid programs were retained in multilymphoid progenitors (MLPs), which reflected a hybrid transcriptional state. By functional single cell analysis, we found that the transcription factors Bcl-11A, Sox4 and TEAD1 (TEF1) governed transcriptional networks in MLPs, which led to B cell specification. Overall, we found that integrated transcriptome approaches can be used to identify previously unknown regulators of multipotency and show additional complexity in lymphoid commitment

    Direct observation of orbital hybridisation in a cuprate superconductor

    Get PDF
    The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates= materials remains heavily debated. Effective low energy single-band models of the copper-oxygen orbitals are widely used because there exists no strong experimental evidence supporting multiband structures. Here we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital (dx2−y2d_{x^2-y^2} and dz2d_{z^2}) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.Comment: supplementary material available on reques

    Dietary Lactoferrin Alleviates Age-Related Lacrimal Gland Dysfunction in Mice

    Get PDF
    BACKGROUND: Decrease in lacrimal gland secretory function is related to age-induced dry eye disease. Lactoferrin, the main glycoprotein component of tears, has multiple functions, including anti-inflammatory effects and the promotion of cell growth. We investigated how oral administration of lactoferrin affects age-related lacrimal dysfunction. METHODS AND FINDINGS: Twelve-month-old male C57BL/6Cr Slc mice were randomly divided into a control fed group and an oral lactoferrin treatment group. Tear function was measured at a 6-month time-point. After euthanasia, the lacrimal glands were subjected to histological examination with 8-hydroxy-2'-deoxyguanosine (8-OHdG) antibodies, and serum concentrations of 8-OHdG and hexanoyl-lysine adduct (HEL) were evaluated. Additionally, monocyte chemotactic protein-1(MCP-1) and tumor necrosis factor-α (TNF-α) gene expression levels were determined by real-time PCR. The volume of tear secretion was significantly larger in the treated group than in the control. Lactoferrin administration reduced inflammatory cell infiltration and the MCP-1 and TNF-α expression levels. Serum concentrations of 8-OHdG and HEL in the lactoferrin group were lower than those in the control group and were associated with attenuated 8-OHdG immunostaining of the lacrimal glands. CONCLUSION: Oral lactoferrin administration preserves lacrimal gland function in aged mice by attenuating oxidative damage and suppressing subsequent gland inflammation

    Translational actomyosin research: fundamental insights and applications hand in hand

    Full text link
    • …
    corecore