2,651 research outputs found

    A general formula of the effective potential in 5D SU(N) gauge theory on orbifold

    Full text link
    We show a general formula of the one loop effective potential of the 5D SU(N) gauge theory compactified on an orbifold, S1/Z2S^1/Z_2. The formula shows the case when there are fundamental, (anti-)symmetric tensor and adjoint representational bulk fields. Our calculation method is also applicable when there are bulk fields belonging to higher dimensional representations. The supersymmetric version of the effective potential with Scherk-Schwarz breaking can be obtained straightforwardly. We also show some examples of effective potentials in SU(3), SU(5) and SU(6) models with various boundary conditions, which are reproduced by our general formula.Comment: 22 pages;minor corrections;references added;typos correcte

    Transmission Resonance in an Infinite Strip of Phason-Defects of a Penrose Approximant Network

    Full text link
    An exact method that analytically provides transfer matrices in finite networks of quasicrystalline approximants of any dimensionality is discussed. We use these matrices in two ways: a) to exactly determine the band structure of an infinite approximant network in analytical form; b) to determine, also analytically, the quantum resistance of a finite strip of a network under appropriate boundary conditions. As a result of a subtle interplay between topology and phase interferences, we find that a strip of phason-defects along a special symmetry direction of a low 2-d Penrose approximant, leads to the rigorous vanishing of the reflection coefficient for certain energies. A similar behavior appears in a low 3-d approximant. This type of ``resonance" is discussed in connection with the gap structure of the corresponding ordered (undefected) system.Comment: 18 pages special macros jnl.tex,reforder.tex, eqnorder.te

    Diffeomorphism on Horizon as an Asymptotic Isometry of Schwarzschild Black Hole

    Full text link
    It is argued that the diffeomorphism on the horizontal sphere can be regarded as a nontrivial asymptotic isometry of the Schwarzschild black hole. We propose a new boundary condition of asymptotic metrics near the horizon and show that the condition admits the local time-shift and diffeomorphism on the horizon as the asymptotic symmetry.Comment: 18 pages, no figures, corrected some typo

    Vortices Clustering: The Origin of the Second Peak in the Magnetisation Loops of High Temperature Superconductors

    Full text link
    We study vortex clustering in type II Superconductors. We demonstrate that the ``second peak'' observed in magnetisation loops may be a dynamical effect associated with a density driven instability of the vortex system. At the microscopic level the instability shows up as the clustering of individual vortices at (rare) preferential regions of the pinning potential. In the limit of quasi-static ramping the instability is related to a phase transition in the equilibrium vortex system.Comment: 11 pages + 3 figure

    Gravitating defects of codimension-two

    Get PDF
    Thin gravitating defects with conical singularities in higher codimensions and with generalized Israel matching conditions are known to be inconsistent for generic energy-momentum. A way to remove this inconsistency is proposed and is realized for an axially symmetric gravitating codimension-two defect in six dimensional Einstein gravity. By varying with respect to the brane embedding fields, alternative matching conditions are derived, which are generalizations of the Nambu-Goto equations of motion of the defect, consistent with bulk gravity. For a maximally symmetric defect the standard picture is recovered. The four-dimensional perfect fluid cosmology coincides with conventional FRW in the case of radiation, but for dust it has rho^{4/3} instead of rho. A four-dimensional black hole solution is presented having the Schwarzschild form with a short-distance correction r^{-2}.Comment: Minor changes, to appear in Classical and Quantum Gravit

    Physical interpretation of stochastic Schroedinger equations in cavity QED

    Full text link
    We propose physical interpretations for stochastic methods which have been developed recently to describe the evolution of a quantum system interacting with a reservoir. As opposed to the usual reduced density operator approach, which refers to ensemble averages, these methods deal with the dynamics of single realizations, and involve the solution of stochastic Schr\"odinger equations. These procedures have been shown to be completely equivalent to the master equation approach when ensemble averages are taken over many realizations. We show that these techniques are not only convenient mathematical tools for dissipative systems, but may actually correspond to concrete physical processes, for any temperature of the reservoir. We consider a mode of the electromagnetic field in a cavity interacting with a beam of two- or three-level atoms, the field mode playing the role of a small system and the atomic beam standing for a reservoir at finite temperature, the interaction between them being given by the Jaynes-Cummings model. We show that the evolution of the field states, under continuous monitoring of the state of the atoms which leave the cavity, can be described in terms of either the Monte Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger equation, depending on the system configuration. We also show that the Monte Carlo Wave-Function approach leads, for finite temperatures, to localization into jumping Fock states, while the diffusion equation method leads to localization into states with a diffusing average photon number, which for sufficiently small temperatures are close approximations to mildly squeezed states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.

    A generalized Pancharatnam geometric phase formula for three level systems

    Get PDF
    We describe a generalisation of the well known Pancharatnam geometric phase formula for two level systems, to evolution of a three-level system along a geodesic triangle in state space. This is achieved by using a recently developed generalisation of the Poincare sphere method, to represent pure states of a three-level quantum system in a convenient geometrical manner. The construction depends on the properties of the group SU(3)\/ and its generators in the defining representation, and uses geometrical objects and operations in an eight dimensional real Euclidean space. Implications for an n-level system are also discussed.Comment: 12 pages, Revtex, one figure, epsf used for figure insertio

    Ultra-High Energy Neutrino Fluxes: New Constraints and Implications

    Full text link
    We apply new upper limits on neutrino fluxes and the diffuse extragalactic component of the GeV gamma-ray flux to various scenarios for ultra high energy cosmic rays and neutrinos. As a result we find that extra-galactic top-down sources can not contribute significantly to the observed flux of highest energy cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce cosmic rays via interactions with relic neutrinos is practically ruled out if cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
    corecore