100 research outputs found

    Conifers phytochemicals: A valuable forest with therapeutic potential

    Get PDF
    Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.This research was funded by University of Hradec Kralove (Faculty of Science VT 2019-2021)

    Potential usage of edible mushrooms and their residues to retrieve valuable supplies for industrial applications

    Get PDF
    Currently, the food and agricultural sectors are concerned about environmental problems caused by raw material waste, and they are looking for strategies to reduce the growing amount of waste disposal. Now, approaches are being explored that could increment and provide value-added products from agricultural waste to contribute to the circular economy and environmental protection. Edible mushrooms have been globally appreciated for their medicinal properties and nutritional value, but during the mushroom production process nearly one-fifth of the mushroom gets wasted. Therefore, improper disposal of mushrooms and untreated residues can cause fungal disease. The residues of edible mushrooms, being rich in sterols, vitamin D2, amino acids, and polysaccharides, among others, makes it underutilized waste. Most of the published literature has primarily focused on the isolation of bioactive components of these edible mushrooms; however, utilization of waste or edible mushrooms themselves, for the production of value-added products, has remained an overlooked area. Waste of edible mushrooms also represents a disposal problem, but they are a rich source of important compounds, owing to their nutritional and functional properties. Researchers have started exploiting edible mushroom by-products/waste for value-added goods with applications in diverse fields. Bioactive compounds obtained from edible mushrooms are being used in media production and skincare formulations. Furthermore, diverse applications from edible mushrooms are also being explored, including the synthesis of biosorbent, biochar, edible films/coating, probiotics, nanoparticles and cosmetic products. The primary intent of this review is to summarize the information related to edible mushrooms and their valorization in developing value-added products with industrial applications.This research was funded by the UHK (Faculty of Science, VT2019-2021)

    Design, synthesis and in vitro evaluation of benzothiazole-based ureas as potential ABAD/17β-HSD10 modulators for Alzheimer’s disease treatment

    Get PDF
    This work was supported by the Ministry of Health of the Czech Republic (no. NV15-28967A), Charles University in Prague (no. GAUK B-CH/992214, SVV 260 291) and the Alzheimer’s Society (specifically The Barcopel Foundation). This research is part-funded by the MSD Scottish Life Sciences fund.Amyloid-beta peptide (Aβ) has been recognized to interact with numerous proteins, which may lead to pathological changes in cell metabolism of Alzheimer’s disease (AD) patients. One such known metabolic enzyme is mitochondrial amyloid-binding alcohol dehydrogenase (ABAD), also known as 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10). Altered enzyme function caused by the Aβ-ABAD interaction, was previously shown to cause mitochondrial distress and a consequent cytotoxic effect, therefore providing a feasible target in AD drug development. Based on previous frentizole derivatives studies, we report two novel series of benzothiazolyl ureas along with novel insights into the structure and activity relationships for inhibition of ABAD. Two compounds ( 37 , 39 ) were identified as potent ABAD inhibitors, where compound 39 exhibited comparable cytotoxicity with the frentizole standard; however, one-fold higher cytotoxicity than the parent riluzole standard. The calculated and experimental physical chemical properties of the most potent compounds showed promising features for blood-brain barrier penetration.PostprintPeer reviewe

    6-benzothiazolyl ureas, thioureas and guanidines are potent inhibitors of ABAD/17β-HSD10 and potential drugs for Alzheimer's disease treatment : design, synthesis and in vitro evaluation

    Get PDF
    Background : The mitochondrial enzyme amyloid beta-binding alcohol dehydrogenase (ABAD) also known as 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) has been connected with the pathogenesis of Alzheimer’s disease (AD). ABAD/ 17β-HSD10 is a binding site for the amyloid-beta peptide (Aβ) inside the mitochondrial matrix where it exacerbates Aβ toxicity. Interaction between these two proteins triggers a series of events leading to mitochondrial dysfunction as seen in AD. Methods : As ABAD’s enzymatic activity is required for mediating Aβ toxicity, its inhibition presents a promising strategy for AD treatment. In this study, a series of new benzothiazolylurea analogues have been prepared and evaluated in vitro for their potency to inhibit ABAD/ 17β-HSD10 enzymatic activity. The most potent compounds have also been tested for their cytotoxic properties and their ability to permeate through blood-brain barrier has been predicted. To explain the structure-activity relationship QSAR and pharmacophore studies have been performed. Results and Conclusions : Compound 12 was identified being the most promising hit compound with good inhibitory activity (IC50 = 3.06 ± 0.40µM) and acceptable cytotoxicity profile comparable to the parent compound of frentizole. The satisfactory physical-chemical properties suggesting its capability to permeate through BBB make compound 12 a novel lead structure for further development and biological assessment.PostprintPeer reviewe

    A comparison of the neuroprotective efficacy of newly developed oximes (K117, K127) and currently available oxime (obidoxime) in tabun-poisoned rats

    Get PDF
    The potency of newly developed bispyridinium compounds (K117, K127) to reduce tabun-induced acute neurotoxic signs and symptoms was compared with currently available oxime (obidoxime) using functional observational battery. The neuroprotective effects of atropine alone and atropine combined with one of three bispyridinium oximes (K117, K127, obidoxime) on rats poisoned with tabun at a sublethal dose (180 μg/kg i.m.; 80% of LD50 value) were studied. Tabun-induced neurotoxicity was monitored using a functional observational battery and automatic measurement of motor activity at 24 h following tabun challenge. The results indicated that all tested oximes combined with atropine enabled tabun-poisoned rats to survive 24 h following tabun challenge while one tabun-poisoned rats died within 24 h after tabun poisoning when the rats were treated with atropine alone. Newly developed oxime K127 combined with atropine was the most effective in decreasing tabun-induced neurotoxicity in the case of sublethal poisonings among all oximes tested. Nevertheless, the differences of neuroprotective efficacy between K127 and obidoxime are not sufficient to replace obidoxime by K127 for the treatment of acute tabun poisonings

    Novel benzothiazole-based ureas as 17β-HSD10 inhibitors, a potential Alzheimer’s disease treatment

    Get PDF
    Funding: This work was supported by Alzheimer’s Society (specifically The Barcopel Foundation), Scottish Universities Life Science Alliance (SULSA), The Rosetrees Trust, WT-ISSF and RS MacDonald Charitable Trust, Ministry of Education, Youth and Sports of Czech Republic (project ESF no. CZ.02.1.01/0.0/0.0/18_069/0010054), and University of Hradec Kralove (Faculty of Science, no. VT2019-2021, SV2115-2018, and Postdoctoral job positions at UHK).It has long been established, that mitochondrial dysfunction in Alzheimer’s disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17β-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17β-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.Publisher PDFPeer reviewe

    Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer’s disease treatment

    Get PDF
    This work was supported by the Ministry of Health of the Czech Republic (no. NV15-28967A), the Charles University in Prague (SVV 260 291), COST Action CM1103 (STSM 15879 and 17487) and CA15135, University of Hradec Kralove (Faculty of Informatics and Management, project Excellence 2015), University of St Andrews (undergraduate project funding to D.Z.), Biotechnology and Biological Sciences Research Council (BBSRC; no. BB/J01446X/1), the Alzheimer’s Society and the Barcopel Foundation.Alzheimer’s disease (AD) is a neurodegenerative disorder associated with an excessive accumulation of amyloid-beta peptide (Aβ). Based on the multifactorial nature of AD, preparation of multi-target-directed ligands presents a viable option to address more pathological events at one time. A novel class of asymmetrical disubstituted indolyl thioureas have been designed and synthesized to interact with monoamine oxidase (MAO) and/or amyloid-binding alcohol dehydrogenase (ABAD). The design combines the features of known MAO inhibitors scaffolds (e.g. rasagiline or ladostigil) and a frentizole moiety with potential to interact with ABAD. Evaluation against MAO identified several compounds that inhibited in the low to moderate micromolar range. The most promising compound ( 19 ) inhibited human MAO-A and MAOB with IC50 values of 6.34 μM and 0.30 μM, respectively. ABAD activity evaluation did not show any highly potent compound, but the compound series allowed identification of structural features to assist the future development of ABAD inhibitors. Finally, several of the compounds were found to be potent inhibitors of horseradish peroxidase (HRP), preventing the use of the Amplex™ Red assay to detect hydrogen peroxide produced by MAO, highlighting the need for serious precautions when using an enzyme-coupled assay.PostprintPeer reviewe
    corecore